Отправить сообщение, заявку, вопрос

Зарегистрироваться для участия в конференции

Запросить консультацию специалистов по данному техническому решению

Рубрикатор материалов

Сейчас в информационной базе:
рубрик - 73 , авторов - 231 ,
всего информационных продуктов - 2137 , из них
статей журнала - 473 , статей базы знаний - 58 , новостей - 1547 , конференций - 3 ,
блогов - 8 , постов и видео - 39 , технических решений - 9

Copyright © 2016-2018 ГеоИнфо
Все права защищены

Разработка и сопровождение: InfoDesigner.ru
28 июля 2016 года

Об устойчивости откосов и склонов, включая армогрунтовые

В последние годы инженерам все чаще приходится решать задачи, связанные со строительством сооружений на природных склонах, или же возводить искусственные откосы. В связи с этим оползневая опасность и предотвращение катастроф, связанных с ней, становятся все более актуальными проблемами.

В настоящей статье приводятся некоторые актуальные примеры аварий, вызванных некачественными инженерными изысканиями и проектированием на оползневых склонах и предлагаются пути повышения качества расчетов.

Барвашов Валерий АлександровичВедущий научный сотрудник НИИОСП им. Н.М.Герсеванова АО «НИЦ Строительство»

Значительная часть населения Земли живет в условиях оползневой опасности. Причин обрушения естественных склонов и искусственных откосов существует очень много. Это и деградация свойств грунтов при увлажнении, и сейсмика, и изменение конфигурации (подмыв, подрезка), и пригрузка, и техногенные воздействия и т.д. Устойчивость возводимых откосов можно оценить достаточно точно, поскольку в них свойства грунтов измеряются и контролируются. Грунтовые массивы можно укреплять нагелями, геосинтетикой, искусственными волокнами (фиброй), подпирать сваями и/или стенами. Для таких откосов нужны свои методы расчета.

Искусственные земляные массивы также подвержены авариям. Приведем для примера две известных крупных аварии, произошедших совсем недавно в США.

Разрушение ограждающей дамбы шламохранилища горной разработки меди и золота (компания British Imperial) в Британской Колумбии на западе Канады (Mount Pouley, Canada, B.C.) в августе 2015 г. привело к утечке ?10 миллионов м3 шлама в окружающие леса, озера и реки. По заключению независимой комиссии экспертов, авария произошла из-за недочетов изысканий (был пропущен прослой слабого грунта в основании дамбы), и проектирования (завышена крутизна откоса).

Рис. 1. Прорыв ограждающей дамбы хвостохранилища горных разработок золота и меди в авг. 2015 г (Mount Pouly, British Columbia, Canada) Рис. 1. Прорыв ограждающей дамбы хвостохранилища горных разработок золота и меди в авг. 2015 г (Mount Pouly, British Columbia, Canada)Рис. 1. Прорыв ограждающей дамбы хвостохранилища горных разработок золота и меди в авг. 2015 г (Mount Pouly, British Columbia, Canada)
(http://news.nationalpost.com/news/canada/anger-and-confusion-after-worst-disaster-in-canadian-mining-history-darkens-prosperous-b-c-town)

 

Вторая авария – это разрушение самой высокой в США армогрунтовой насыпи высотой 73 м, возведенной для удлинения взлетно-посадочной полосы в аэропорту Йигер, вблизи г. Чарльстоун, штат Западная Вирджиния США (Yеager Airport, Charlestone, West Virginia, USA). Причины этой аварии активно обсуждались в Интернете на англоязычном сайте Geotechnical Engineering. Выдвигались различные версии, но единодушия не было. На наш взгляд, армирующие полотнища были слабо скреплены друг с другом на внешней стороне откоса, т.е. фактически «драпировали», а не удерживали грунт от выдавливания наружу. Такие дефекты имеют тенденцию прогрессировать. Это привело к длительному (?2 года) разрушению за счет последовательного выдавливания грунта из насыпи наружу в местах нарушений слабых соединений армирующих элементов. Это началось, возможно, в одной или нескольких точках, а затем процесс разрушения начал прогрессировать.

Рис. 2. «Задрапированный» армогрунтовый откос насыпи в аэропорту Yeager Рис. 2. «Задрапированный» армогрунтовый откос насыпи в аэропорту Yeager

 

Рис. 3. Авария откоса армогрунтовой насыпи в аэропорту Yeager, CША Рис. 3. Авария откоса армогрунтовой насыпи в аэропорту Yeager, CШАРис. 3. Авария откоса армогрунтовой насыпи в аэропорту Yeager, CША
(https://www.stgec.org/presentations/STGEC_2010/2010%20STGEC%20-%20Yeager%20Airport%20-%20Tallest%20Reinforced%20Slope%20in%20N%20America.pdf)

 

Эти и множество других примеров показывают актуальность разработки и уточнения методов проектирования и расчета устойчивости искусственных откосов, включая армированные.

 

Методы расчёта устойчивости

Исследования устойчивости откосов/склонов продолжается уже 100 лет, за это время было разработано много методов расчета, которые можно разделить на три следующие группы:

Большинство методов расчета устойчивости откосов/склонов дают решения в условиях плоской задачи при допущении о форме линии скольжения (разрушения): прямая, окружность, логарифмическая спираль, ломаная линия, искомая линия. В некоторых методах учитывается образование закола в верхней части откоса. Решение получается минимизацией коэффициента устойчивости K=R/F, по геометрическим параметрам виртуальных линий скольжения, где F – сумма сдвигающих, а R – сумма удерживающих усилий вдоль линии скольжения. В отличие от этих методов в методе Моргенштерна-Прайса [1] форма линии скольжения определяется конечными приращениями.

К.Терцаги в своей книге [2] предложил учитывать закол (вертикальную трещину) в верхней части откоса, который предшествует разрушению, инициируя затем потерю общей устойчивости.

Решения В.В. Соколовского [3] разработаны для оценки устойчивости однородных откосов в условиях предельного состояния, которое достигается сразу во всех точках области разрушения (статическое разрушение). Очевидно, что устойчивость при прогрессирующем (кинематическом) разрушении меньше, чем при статическом.

Ко второй группе относятся методы построения «равнопрочного» или «равноустойчивого» профиля откоса в условиях плоской задачи. Такой профиль возникает после обрушения ранее существовавшего массива грунта. Предполагается, что, сравнивая форму такого откоса с формой существующих откосов, можно оценить, насколько устойчивы последние.

Впервые такие откосы рассматривал В.В.Соколовский [3] (не называя их «равнопрочными» или «равноустойчивыми»), который показал, что после обрушения существующего откоса образуется новый откос, который имеет выполаживающуюся нижнюю часть и вертикальную и даже нависающую верхнюю часть - «закол», ведь связный грунт может работать на растяжение. Такие откосы мы часто видим по берегам рек и водоемов.

Н.Н.Маслов предложил и термин, и метод определения «равнопрочного» контура откоса [4], напоминающего по форме профили берега рек и водоемов, которые периодически оползают за счет подмыва водой.

Контур такого «равнопрочного» откоса по Н.Н.Маслову возникает за счет разрушения однородного полубесконечного тела с горизонтальной поверхностью в условиях плоской задачи. Но такое разрушение невозможно без значительного внешнего воздействия, что физически необъяснимо. Кроме того, в разрешающем уравнении для определения «равнопрочной» линии разрушения такого откоса автором была допущена ошибка: неучет наклона линии скольжения при учете вклада сцепления грунта. Тем не менее, «равнопрочные» откосы Н.Н.Маслова по форме очень похожи на откосы, образовавшиеся после оползней.

В [5] дана форма аналогичного, но уже «равноустойчивого» откоса, и такая же, как у откосов Соколовского. Но в формуле 6.53 на стр. 155 допущена опечатка, т.к. эта формула дает высоту устойчивого вертикального откоса, а не нагрузку, как указано в [5].

Метод конечных элементов (PLAXIS, MIDAS) дает возможность упругопластического расчета двухмерных и трехмерных откосов/склонов. Но в этих методах не учитывается образование сдвиговых разрывов грунта в «пластических» зонах. Поэтому результаты решения зависят от влияния размера ячейки сетки разбиения расчетной области на конечные элементы.

Итак, за прошедшие 100 лет начиная с появления первого метода расчета устойчивости откоса по гипотезе о круглоцилиндрической форме поверхности скольжения, предложенного в 1916 г. Р.Петерсоном (позднее «метод Шведского Геотехнического Общества»), разработано много таких методов, но, в основном, они отличаются лишь принятой формой линии скольжения, что не является существенным фактором. Гораздо важнее учет пространственного характера разрушения и пространственной неоднородности грунтовых массивов. Но именно это в данном методе не учитывается.

 

Направления новых исследований

Два примера недавних аварий (см. выше) указывают направления новых исследований.

Авария дамбы хвостохранилища (см. рис.1) произошла, на наш взгляд, из-за растяжения этой дамбы вдоль ее продольной оси, имеющей неправильную кольцевую форму, давлением жидких отходов изнутри наружу. Этот эффект был усилен прослойкой слабых ледниковых глин, залегающих ниже основания дамбы. В данном случае проектный расчет в условиях плоской задачи не представителен. Это типичная пространственная задача. Такой расчет можно сделать методом конечных элементов, по крайней мере для осесимметричного случая, но именно решение пространственной задачи отражает реальность. Как уже указано выше, в программах МКЭ грунтовая среда – всегда сплошная и не учитывает возникновение сдвиговых разрывов при достижении предельного состояния, что ведет к завышению прочности грунта на сдвиг.

Прогрессирующее разрушение откоса армогрунтовой насыпи (рис. 2, 3) продолжалось около двух лет. Не было аварийных разрушений, постепенно армогрунтовый откос пришел в непригодное состояние.

Это важный случай из практики, т.к. сейчас широко используются методы армирования откосов различными материалами и способами.

Уточнение параметрической формы линии скольжения при расчете устойчивости откоса не является существенным, т.к. это мало влияет на величину расчетного коэффициента устойчивости. Гораздо важнее учесть влияние возможной неравномерности свойств грунтов, слагающих откос, между точками измерения параметров грунта. При отсутствии таких данных параметры грунтов можно варьировать с помощью аппроксимирующей функции между точками измерения, оценивая получаемую разницу результатов расчета, например, в %. Для этого нужно выполнять не один, а серию расчетов, учитывающих разброс исходных данных.

Большинство существующих методов расчета армогрунтовых откосов предполагают замену арматуры на усилия, равные ее прочности на разрыв, и иногда на срез. А.Savitzky [6] предложил заменять арматуру на эквивалентное сцепление грунта, что сводит расчет устойчивости армогрунтового откоса к расчету откоса с увеличенным сцеплением (В.А.Барвашов [7]).

 

Автор надеется, что представленная информация инициирует дискуссию по рассмотренным вопросам.

 

Список литературы
  1. Stability modelling with SLOPE/W, 2007, GEO-SLOPE. An engineering methodoljgy. International Ltd., 2007, 244 p.
  2. К.Терцаги. Теория механики грунтов (перевод с нем. яз. под ред. Н.А.Цытовича). Госстройиздат, М.,1967, 567 с.
  3. В.В.Соколовский. Статика сыпучей среды. Госстройиздат, М., 1960, 243 с.
  4. Н.Н.Маслов. Механика грунтов в практике строительства. Стройиздат, М., 1977.
  5. С.Б. Ухов, В.В.Семенов, В.В.Знаменский, З.Г.Тер-Мартиросян, С.Н.Чернышев. Механика грунтов, основания и фундаменты. АСВ, М., 1994, 624 с.
  6. Savizky A. Mechanics of reinforced soil. Rotterdam, Brookfield; A.A.Balkema, 2000.
  7. В.А.Барвашов, И.М.Иовлев. Метод расчета нагельного крепления грунтовых откосов. «Геотехника», международный журнал, М., 2011, 05, 38-44 с.