Отправить сообщение, заявку, вопрос

Зарегистрироваться для участия в конференции

Запросить консультацию специалистов по данному техническому решению

Рубрикатор материалов

Сейчас в информационной базе:
рубрик - 69 , продуктов - 1753 , авторов - 194

Copyright © 2016-2018 ГеоИнфо
Все права защищены

Разработка и сопровождение: InfoDesigner.ru
Теория и практика изысканий
13 марта 2018 года
>>> Просмотров:151сервис учёта просмотров включен с 15.03.2018

Эколого-геокриологические и геотехнические условия газотранспортной системы «Сила Сибири»

В статье освещено современное состояние реализации проекта создания газотранспортной системы «Сила Сибири». После успешных изысканий и проектирования, начат один из наиболее ответственных этапов – прокладка трубы и строительство системы в целом. В статье приведены основные результаты эколого-геокриологических исследований Института мерзлотоведения СО РАН (ИМЗ) последних лет, позволившие выявить главные сложности проекта и показать пути их решения.

Железняк Михаил НиколаевичДиректор Института мерзлотоведения им. П.И. Мельникова СО РАН (ИМЗ), д.г.-м.н.
Сериков Сергей ИвановичНаучный сотрудник Института мерзлотоведения им. П.И.Мельникова СО РАН
Шац Марк МихайловичВедущий научный сотрудник Института мерзлотоведения им. П.И. Мельникова СО РАН (ИМЗ), к.г.н.

Проект газотранспортной системы (ГТС) «Сила Сибири» в Восточной Сибири в последнее время успешно реализуется. Завершены стадии изысканий и проектирования, в разгаре прокладка трубы. Ранее были освещены сложные природные, в том числе инженерно-геологические условия трассы, геотехнические и геоэкологические характеристики трубопровода, ряд сопутствующих моментов разной ведомственной принадлежности [1-5,7,9,10,14,15]. Рассмотрен ход прокладки трубы по состоянию на начало 2017 г. [6,8,13]. Особенно актуальной задачей реализуемого этапа проекта является получение оперативной информации о состоянии природной среды по трассе ГТС, в том числе о реакции ее наиболее динамичных компонентов, в том числе многолетнемерзлых пород (ММП), на техногенные воздействия.

Отсутствие, либо недостаточность отмеченных выше материалов, как правило, приводят к неопределенности при выборе стратегии природопользования, связанной с невозможностью разработки плана конкретных природоохранных и компенсационных мероприятий. Их реализация позволяет существенно уменьшить ущерб от освоения.

Это положение можно подтвердить следующим печальным примером. В середине прошлого века в Поволжье развернулась грандиозная стройка крупнейшего комплекса «Атоммаш» по производству оборудования для атомной отрасли. Некачественные изыскания и проектирование привели к серьезным ошибкам. Не был получен объем материалов об инженерно-геологических свойствах горных пород, достаточный для достоверного прогноза. В результате комплекс разместили на просадочных грунтах. Более того, при проектировании в целях экономии было принято решение о сокращении на несколько метров длины свай в основаниях огромных, протяженностью во многие сотни метров, корпусов. Еще до завершения строительства в результате значительного подъема уровня грунтовых вод, питаемых необычно большим количеством атмосферных осадков, в основаниях многих корпусов произошли недопустимые просадки пород, повлекшие нарушения их устойчивости. Технических решений по исправлению ситуации в то время не было, разработать новые не получилось. Стройку пришлось законсервировать. Таким образом, из-за преступной халатности и недооценки значения инженерно-геологического обеспечения строительства были допущены колоссальные потери бюджетных средств.

В общей комплексной системе инженерно-геологических знаний совершенно особым направлением является изучение сезонно- и многолетнемерзлых пород. И дело не только в изучаемых параметрах – составе, строении и свойствах горных пород, но и в особенностях агрегатных состояний объекта исследований. Отрицательные температуры обусловливают принципиальные отличия в составе горных пород с развитием разнообразных подземных льдов, иногда составляющих до 90% толщи, и иных характеристик. Особое значение эти свойства приобретают в процессе освоения северных территорий, когда воздействию подвергаются толщи со специфическими свойствами, принципиально отличными от свойств немерзлых горных пород.

Современное освоение криолитозоны, использование ее ресурсов, проживание городского и сельского населения невозможны без системной оценки совокупного влияния на нее как проектируемых, так и уже существующих промышленных объектов. Их взаимосвязь в сочетании с оценкой последствий социально-экономических, экологических, историко-культурологических и медико-биологических процессов представляет собой сложную задачу, требующую глубокого системного подхода и имеющую фундаментальное социально-региональное значение. Именно эколого-геокриологическая составляющая стала, в последнее время, наиболее актуальной в общей системе инженерно-геологических знаний.

 

Эколого-геокриологические условия и сложности трассы ГТС

Выше было показано, что одним из серьезно затрудняющих реализацию проекта обстоятельств является недостаточность оперативной информации о состоянии природной среды по трассе. В связи с этим особый интерес представляют результаты комплексных исследований сотрудников Института мерзлотоведения им. П.И.Мельникова СО РАН (ИМЗ) последних лет.

В целом обусловливающий многообразие природных условий трассы рельеф ГТС довольно сложен. Он включает высокие горные хребты, плато, плоскогорья и низменности, расчлененные речными долинами. Наиболее высокие горы располагаются в южной и юго-восточной частях территории, где преобладают отметки от 800 до 1500 м над уровнем моря. Основные элементы вытянуты в субширотном или в северо-восточном, направлении. Район Алданского плоскогорья включает крупные мезозойско-кайнозойские морфоструктуры широтного направления – Чульманскую впадину и Центрально-Алданский пологий свод. Морфоструктура Чульманской впадины, выполненной песчано-глинистыми отложениями юры и нижнего мела, характеризуется платообразным рельефом. Рельеф Чульманского плато отличается наличием широких плоских или пологоволнистых водоразделов с довольно крутыми ступенчатыми склонами. Высоты водоразделов составляют 950 – 1050 м, увеличиваясь к югу до 1200 м.

Трасса газопровода пересекает Становой хребет на стыке Республики Саха (в пределах Нерюнгринского района) и Амурской области в пределах Тындинского района. Становой хребет состоит из двух, а местами трех параллельных цепей, не всегда четко выраженных орографически. Абсолютные высоты по трассе достигают 1000 – 1100 м. Геокриологические и инженерно-геокриологические условия по трассе ГТС «Сила Сибири» чрезвычайно пестрые и сложные [4,5,7]. В целом ММП охватывают около трети трассы, зафиксированы участки со всеми типами их пространственного распространения: от сплошного и прерывистого до островного и спорадического. Что касается разреза горных пород, то характерны толщи как с монотонным, так и полигенным строением, при этом последние наиболее опасны для трубопроводов подземной прокладки, вызывающих дополнительные напряжения в системах труба – мерзлый грунт.

Температура горных пород на подошве слоя ее годовых колебаний, обычно 10 – 12 м, в зависимости от напочвенных покровов, состава, строения и свойств самих пород варьирует в широких пределах. Самые низкие температуры характерны для пониженных участков развития переувлажненных, а порой и заболоченных грунтов и наиболее приподнятых горных пространств, достигая там -6,5°С [7]. На рисунке 1 показана временная динамика температуры горных пород на одном их участков трассы.

 

Рис. 1. Ход температур горных пород на глубинах 1,0, 3,0, 5,0 м в водораздельной части перевала «Эвота»

Рис. 1. Ход температур горных пород на глубинах 1,0, 3,0, 5,0 м в водораздельной части перевала «Эвота»

 

На фоне подобного разнообразия природных условий, многоплановы и инженерно-геологические криогенные процессы, особо опасные при освоении. Их характерной чертой является разнообразие форм и приуроченность к определенным элементам рельефа – днищам и нижним частям склонов долин. Значительно ограниченнее они развиты на водоразделах.

 

Рис. 2. Трещины оседания и сползания автомобильного полотна в результате активизации термокарстового процесса по повторно-жильным льдам (2015-2017 гг.). А – трещина сползания по полотну реконструированной дороги; Б – трещина сползания по полотну новой дороги; В – трещина сползания по полотну грунтовой дороги вдоль ГТС, участок руч. Катера. Фото С.И.Серикова. 2015 г.

Рис. 2. Трещины оседания и сползания автомобильного полотна в результате активизации термокарстового процесса по повторно-жильным льдам (2015-2017 гг.). А – трещина сползания по полотну реконструированной дороги; Б – трещина сползания по полотну новой дороги; В – трещина сползания по полотну грунтовой дороги вдоль ГТС, участок руч. Катера. Фото С.И.Серикова. 2015 г.

 

Наиболее развито морозобойное растрескивание пород, криогенное выветривание, наледеобразование и пучение грунтов, в меньшей степени – термокарст, солифлюкция [15]. Морозобойное трещинообразование обусловливает потерю монолитности и прочности массивов пород, а также является причиной образования таких неблагоприятных для строительства и эксплуатации инженерных сооружений процессов и явлений как трещины (рис. 2) и каменные моря – курумы (рис. 3).

 

Рис. 3. Курум (А) на склоне правого берега р. Чульман и морозная сортировка грунтов (Б) в месте перехода ГТС «Сила Сибири». Фото С.И.Серикова. 2015 г.

Рис. 3. Курум (А) на склоне правого берега р. Чульман и морозная сортировка грунтов (Б) в месте перехода ГТС «Сила Сибири». Фото С.И.Серикова. 2015 г.

 

Формируются залежи подземного льда, многочисленных форм крупно- и мелко бугристого рельефа (рис. 4), а также развиваются склоновые процессы. Морозобойные трещины в поверхностных отложениях и связанный с ними полигональный рельеф наиболее четко выражены на поверхности низких заторфованных аккумулятивных террас, в нижних частях пологих склонов, верховьях рек Иенгры, Тимптона, Улахан-Леглигер и др. Средние размеры полигонов здесь достигают 10х10 м, что свидетельствует о низких среднегодовых температурах пород. Максимальная ширина трещин на надпойменных террасах рек достигают 0,2-0,5 м при длине 20 – 40 м и видимой глубине до 2 – 3 м. На водоразделах и в верховьях долин встречаются торфяники, представляющие собой торфяные блоки размером 30х50 м, разделенные полигональной сетью трещин. Сами блоки с поверхности сложены торфом мощностью до 2 – 3 м, подстилаемые тяжелыми суглинками, вмещающими ледяные жилы мощностью до 3 м при ширине до 2 м. Максимальная ширина жил достигает на контакте торфа и суглинков. Повторно-жильные льды встречаются в долинах рек Ороченка, Васильевка, Николкин ключ и др.

 

Рис. 4 . Сфагновые торфяники и болота в днищах долин, пологих склонов и водоразделов. 2016 г. Фото И.В.Дорофеева. 2012 г.

Рис. 4 . Сфагновые торфяники и болота в днищах долин, пологих склонов и водоразделов. 2016 г. Фото И.В.Дорофеева. 2012 г.

 

Наиболее характерно для рассматриваемой территории трещинообразование в пластичных (супесчано-суглинистых) породах, не сопровождающееся заполнением трещин водой и образованием жильных льдов [15]. Такого рода трещинообразование выражается в формировании особого вида мерзлотного микрорельефа – бугристых марей с размерами полигонов от 2х1,5 до 3х5 м, реже до 5х10 м. Ширина трещин варьирует от 5-15 см до 0,5 м и более при глубине от 0,2 до 0,7 м. На пологих (1 – 3°) приводораздельных частях склонов трещиноватость поверхностных грунтов выражена четко и полигоны имеют большие размеры сторон в десятки метров. На более крутых участках склонов (3 – 6°) полигоны имеют меньшие размеры.

Кроме полигонального рельефа на рассматриваемой территории широко распространены структурные формы микрорельефа в виде каменных многоугольников, особенно широко развитых в центральной части Алданского плоскогорья, каменных колец и полос на Чульманском плоскогорье. Обычно каменные многоугольники достигают диаметра 2 – 3 м на породах карбонатной и терригенной формаций и 3 – 10 м на породах магматической группы формаций. Бордюры многоугольников часто представлены обломками скальных пород размерами от 0,1 до 1 и более метров, несущих следы морозной сортировки и выпучивания, а породы внутри многоугольников или колец имеют меньшую крупность или вообще представлены мелкоземом. На плоских водоразделах многоугольники имеют форму, близкую к правильной, а на более крутых склонах (до 10°) часто приобретают форму каменных полос. Примером полигонального рельефа в пределах развития скальных пород являются нагорные террасы [15].

Неглубокое залегание по трассе ММП и связанных с ними вод слоя сезонного протаивания способствуют широкому развитию процессов пучения грунтов, весьма неблагоприятных для инженерного освоения. Отмечаются бугры пучения двух циклов развития - однолетние и многолетние. Наиболее широко бугры пучения развиты в заболоченных верховьях речных долин и на участках, сложенных суглинистыми оторфованными отложениями. Кроме того, бугры пучения отмечаются на заболоченных и замшелых участках террас и водоразделов и особенно в пределах слабо расчлененной части Алданского плоскогорья.

Сезонные (однолетние) бугры пучения высотой 0,5-0,8 и диаметром 1-2 м приурочены, в основном, к участкам избыточного увлажнения – тыловым швам террас, русловым участкам ручьев и рек, водораздельным седловинам, заболоченным склонам и др. В ядрах бугров наблюдаются многочисленные линзы или прослойки льда. Подобные бугры формируют специфический микрорельеф днищ большинства водотоков бассейнов рек Малого и Большого Нимныра, Улахан-Леглигера и других, а их особенностью является широкое развитие специфического «пьяного леса».

Многолетние бугры пучения – гидролакколиты, встречаются более локально, достигают высоты 5 м и диаметра основания 15 – 25 м. Обычно они приурочены к местам разгрузки трещинно-жильных и других подземных вод (бассейны рек Васильевка, Керак и др.) [15]. Наиболее крупный бугор на пойме р. Горбылях зафиксирован в пределах обводненного осоково-сфагнового болота. Форма бугра овальная, высота 4 – 5 м, длина основания 15 – 20 м.

Еще одним проявлением процессов пучения и сортировки являются весьма распространенные пятна-медальоны, каменные многоугольники и т.д. Процесс неравномерного пучения, связанный с промерзанием воды в замкнутом объеме, относится к наиболее геотехнически опасным и может приводить к выпучиванию трубопроводов подземного заложения из-за притока влаги к фронту промерзания.

По трассе прокладки ГТС отмечаются залежи подземных льдов двух генераций – повторно-жильные и инъекционных. В северной части трассы повторно-жильные льды приурочены к надпойменным террасам крупных рек и фрагментам озерно-аллювиальной равнины в районах Средней Лены, где на участках их развития встречаются термокарстовые озера. Отдельные выходы повторно-жильных льдов для рассматриваемой трассы известны в долинах некоторых рек Алданского щита в южной части Якутии и даже на севере Амурской области [1 – 3].

На большей части трассы ГТС поверхностные отложения имеют небольшую льдистость при неглубоком залегании коренной основы. Поэтому там преобладают мелкие термокарстовые формы деструктивной направленности – мочажины и воронки, достигающие в диаметре 0,5 – 2,0 м и по глубине 0,5 м, развитые в плоскогорных районах распространения пород метаморфической и магматической формаций докембрия. Обусловлены они в основном увеличением глубины сезонного протаивания сильно льдистых делювиальных суглинков в процессе эволюции микрорельефа и растительного покрова. Реже встречаются термокарстовые озера диаметром до 300 м (бассейн р. Кабакта и др.) [1]. Южнее п. Чульман наиболее широким развитием термокарстовые озера пользуются в долине р. Горбылях, в частности на первой его террасе. Форма озер круглая или овальновытянутая, дно плоское. Размеры их в поперечнике колеблются от 5,0 – 10,0 м, мелкие до 200 – 300 м (крупные). По [3] особенности географического распространения ММП в Южной Якутии предполагают полное отсутствие термокарстовых процессов лишь на склонах и водоразделах Лено-Алданского и Чульманского плато.

В пределах резко расчлененных плоскогорных массивов отмечается еще одна форма термокарста – бугристо-мочажинный рельеф. Обычно он формируется в днищах узких речных долин, заполненных флювиогляциальным материалом, имеющим большую льдистость, и имеет эрозионно-термокарстовое происхождение. Округлые бугры диаметром 15 – 50 м и выстой до 2,0 м, разделенные полосками сочленяющихся мочажин, генетически представляют обрывки первой или второй надпойменных террас. Особые по степени развития термокарста районы представляют собой аллювиальные равнины (Токарикано-Иенграская и др.) и пологоволнистые участки плоскогорий (Чульманского, Нимныро-Ыллымахского). Специфику термокарстовых форм рельефа здесь определяет высокая льдистость покровных отложений и условия стока поверхностных вод.

Вытаивание подземных льдов в сочетании с морозным пучением, морозобойным растрескиванием, солифлюкцией, эрозией и плоскостным смывом создают здесь своеобразные комплексы криогенных форм рельефа, не встречающиеся в других районах центральной части Южной Якутии.

Особо следует отметить, что территория, на которую распространяется влияние строительства и эксплуатации магистрального газопровода «Сила Сибири», относится к одному из наиболее наледоопасных регионов в нашей стране. Судя по имеющимся материалам, только в пределах отрезка трассы Чаянда-Ленск отмечено 12 участков пучения грунтов и 3 – с наледями, для отрезка Ленск-Сковородино – 63 участка с наледями и 273 участков сезонного или многолетнего пучения. Очень часто наледеобразование там сопровождается развитием сезонных и многолетних бугров пучения, а также процессами термокарста по залежам инъекционных и повторно-жильных льдов. Поэтому все эти участки следует рассматривать в отношении инженерного освоения как потенциально наледно опасные.

Результаты дешифрирования пространственных закономерностей развития наледей по трассе ГТС свидетельствуют об их широком распространены от центральной части Южной Якутии вплоть до юга Амурской области. В подобных условиях на участках пересечения трассой можно ожидать усиления наледеобразования.

Судя по опыту предыдущего инженерного освоения (строительство и эксплуатация федеральной автомобильной трассы Лена, часто именуемой – АЯМ, Амуро-Якутской железнодорожной и, Байкало-Амурской железнодорожной магистралей, нефтепровода «Восточная Сибирь –Тихий Океан» [4,5,9,10,15] к наиболее геотехнически проблемным следует отнести участки наледеобразования в пределах горных участков трассы. Там воздействие собственно трубопровода и других сопутствующих инженерных сооружений на грунты основания приводят к изменению теплового режима и свойств.

Не менее сложным и комплексным криогенным явлением является мерзлотный карст. Имеются сведения о многочисленности и активности карстовых воронок на участках развития ММП в пределах Лено-Алданского карстующегося плато, расположенных севернее трассы ГТС Сила Сибири, активных карстовых воронках непосредственно в принюйской части Чаяндинского нефтегазового газоконденсатного месторождения (ЧНГГКМ), на Якокит-Селигдарском междуречье, на переходе Алданского плоскогорья к Чульманскому плато. Подобные участки представляют особую опасность в плане геотехнической надежности и требуют пристального внимания от периода рекогносцировочных работ до стадий строительства и эксплуатации. Именно такие участки обычно становятся базой развития других процессов – активных тектонических разломов, ослабленных зон дробления коренных пород, наледеобразования и т.п.

Ресурсной базой ГТС является Чаяндинское НГГКМ, в орографическом отношении представляющее собой слабо всхолмленную равнину [6,8]. Оно открыто в 1989 г. и включает в себя 2 более мелких месторождения – Озерное и Нижне-Хамакинское. Согласно нефтегеологическому районированию данная территория относится к Непско-Ботуобинской нефтегазоносной области – богатейшей по разведанным запасам углеводородов и прогнозным ресурсам части Лено-Тунгусской нефтегазоносной провинции, где в настоящее время разведано 13 месторождений нефти и газа, среди которых 3 крупных и 1 уникальное.

Главные нефтегазоносные толщи – базальные отложения рифей-венд-нижнекембрийского терригенно-карбонатного комплекса.
Месторождение приурочено к крупной неантиклинальной ловушке в северо-восточной части Непского свода и связано с зонами выклинивания песчаников венда. Основные горизонты: Ботуобинский – соответствует нижней подсвите бюкской свиты; Хамакинский – верхней подсвите паршинской свиты. Горизонты сложены линзовидными телами преимущественно средне- и мелкозернистых хорошо сортированных песчаников с кварцевым и сульфатно-карбонатным цементом. Мощность тел достигает 20 м.
Все залежи пластовые, литологически и тектонически экранированные. Глубина нахожения залежи 1450 – 1850 м. Разрывные нарушения делят месторождение на 2 блока – северный и южный.Виды газа – метановый (86%), низко углекислый, азотный (до 8%) и низко конденсатный. Газовая залежь содержит нефтяные оторочки. Нефть тяжелая, смолистая, сернистая, парафиновая.

 

Современное состояние проекта

В настоящее время основное внимание уделяется двум главным аспектам реализации проекта. В первую очередь это комплекс проблем, связанных непосредственно со строительством трубопровода, во вторую – продолжением обустройства ресурсной базы ГТС – Чаяндинского НГГКМ. История начальных стадии реализации проекта была освещена ранее [6,8,12].

21 мая 2014 года «Газпром» и CNPC подписали 30-летний Договор купли-продажи российского газа по «восточному» маршруту» (по газопроводу «Сила Сибири»). Документ предполагает поставку в КНР 38 млрд куб. м газа в год. В 2015 году «Газпром» и CNPC подписали Меморандум о взаимопонимании по проекту трубопроводных поставок природного газа в Китай с Дальнего Востока России, а в 2016 году – Меморандум по хранению газа и электрогенерации на территории КНР, и Меморандум о проведении исследования возможности сотрудничества в области газомоторного топлива.

4 июля 2017 года «Газпром» и CNPC подписали Дополнительное соглашение к Договору купли-продажи природного газа по «восточному» маршруту. В соответствии с документом, поставки газа в КНР должны начаться 20 декабря 2019 года. 

«Газпром» построил уже 1 тыс. 120 км газопровода «Сила Сибири», сварено в нитку 1 тыс. 348 км, сообщил журналистам председатель правления ПАО «Газпром» Алексей Миллер.

В конце 2017 года Алексей Миллер подтвердил, что поставки «голубого топлива» в Китай начнутся точно в установленные сроки. Согласно соглашению с китайской корпорацией CNPC, Россия будет поставлять 38 млрд кубометров в год в течение 30 лет при общей сумме контракта - $400 млрд [8,13].

Помимо самого трубопровода, А. Миллер отметил, что началось строительство огромного Амурского газоперерабатывающего завода, который станет крупнейшим в России, явится важным звеном в цепочке поставок газа в Китай и одним из самых больших в мире предприятий по переработке природного газа. Его проектная мощность составит до 49 млрд куб. м газа в год. В состав завода также войдет крупнейшее в мире производство гелия – до 60 млн куб. м год.На завод будет поступать многокомпонентный газ Якутского и Иркутского центров газодобычи, которые «Газпром» создает в рамках Восточной газовой программы. На ГПЗ из газа будут выделяться этан, пропан, бутан, пентан-гексановая фракция и гелий — ценные компоненты для газохимической и других отраслей промышленности.

Собственно Чаяндинское месторождение имеет сложное геологическое строение и особые термобарические пластовые условия. Поэтому для его освоения «Газпром» применяет самые передовые технические достижения. В суровых природно-климатических условиях Якутии используются малолюдные технологии, предполагающие обеспечение контроля за работой оборудования и комплексное управление объектами в автоматическом режиме. Такой подход способствует оптимизации численности персонала, сокращению транспортных издержек при перевозках людей, отказу от избыточного строительства инфраструктуры, связанной с пребыванием работников на объектах.

Месторождение имеет большую площадь, поэтому для снижения затрат на строительство линий электропередач на удаленных кустах газовых скважин планируется применять автономные источники энергоснабжения на основе возобновляемых источников энергии.

На Чаяндинском месторождении впервые в России в промышленном масштабе будет использована технология мембранного извлечения гелия из природного газа непосредственно на промысле. Она позволит направлять в газопровод то количество гелия, которое будет востребовано рынком. В последний период освоения на месторождении проведено бурение восемнадцати разведочных скважин, а также на территории более 4 тыс. квадратных километров сейсморазведочные работы в 3D-формате, позволяющие детально оценить большинство категорий запасов.

 

Заключение

Судя по результатам проведенных исследований, к наиболее сложным участкам, где необходимы систематические мониторинговые исследования, связанные с угрозой термокарста по залежам подземных льдов и ледогрунтов, относится пространство от р. Бирюк до Олекмы, по карстовой опасности – от Чаяндинского месторождения до Компрессорной Станции (КС)-4 «Нимнырская» и небольшой участок между КС «Нимнырская»-КС «Нагорная», наледная опасность имеется на отрезке трассы от р. Нюя до р. Малый Иным.

Особое внимание следует уделить широко развитому на Лено-Алданском и Приленском плато мерзлотному карсту. Даже в пределах Чаяндинского НГКМ [11] имеются участки с активными карстовыми воронками. При техногенном нарушении в ходе строительства и эксплуатации ГТС, это может привести к серьезным негативным последствиям и отказам техногенных систем. Примечательно, что в случае сопряженного воздействия на один и тот же участок трассы трубопровода нескольких экзогенных процессов, даже при их разновременности, степень пораженности геосистем возрастает и усугубляются геотехнические риски эксплуатационной надежности.

Сложные и разнообразные природные условия трассы ГТС обусловливают на стадиях строительства и эксплуатации в пределах участков с многолетнемерзлыми грунтами и опасными геокриологическими и инженерно-геокриологическими процессами ряд специфических проблем. Избежать их возможно лишь при условии доизучения наиболее сложных участков в отношении:

  • характера распространения ММП;
  • геотермических условий с выстойкой скважин;
  • конкретных данных о пространственном развитии криогенных процессов, их динамике, тенденциях и интенсивности;
  • необходимых для прогнозных теплотехнических расчетов теплофизических характеристик напочвенных покровов.

Это позволит уменьшить степени технологических опасностей и сократить расходы на их оптимизацию.

 

Список литературы
1. Алексеев В.Р. Условия формирования и распространение наледей на юге Якутии // Наледи Сибири. М.: Наука, 1969. - С.31- 41.
2. Алексеев В.Р. Наледи как фактор долинного морфолитогенеза // Региональная геоморфология Сибири. – Иркутск, 1973. – С. 99 -134.
3. Алексеев В.Р. Ландшафтная индикация наледных явлений. – Новосибирск: Наука, 2005. – 364 с.
4. Байкало-Амурская железнодорожная магистраль. Геокриологическая карта. М-б 1: 2 5000 000. М.: ГУГК, 1979. 2 Л.
5. Геокриология СССР.Средняя Сибирь. М., Изд-во МГУ, 1990, 383 с.
6. Дальневосточный газ приберегут для «Силы Сибири». Электронный ресурс. Источник: http://gazoprovod-sila-sibiri.ru. Код доступа: http://gazoprovod-sila-sibiri.ru/dalnevostochnyj-gaz-priberegut-dlya-sily-sibiri/. Дата обращения: 17.08.2017.
7. Железняк М.Н. Геотемпературное поле и криолитозона юго-востока Сибирской платформы. – Новосибирск: Наука, 2005. – 227 с.
8. Крупнейшая система транспортировки газа на Востоке России. Электронный ресурс. Источник: http://www.gazprom.ru. Код обращения: http://www.gazprom.ru/about/production/projects/pipelines/built/ykv/. Дата обращения: 12.08.2017.
9. Мерзлотно-ландшафтная карта Якутской АССР. Масштаб 1: 2 500 000 / Ред. П.И.Мельников. - М.: ГУГК, 1991. - 2 л.
10. Мерзлотные ландшафты Якутии (Пояснительная записка к Мерзлотно-ландшафтной карте Якутской АССР масштаба 1:2 500 000) / Федоров А.Н., Ботулу Т.А., Варламов С.П. и др. - Новосибирск: ГУГК, 1989. - 170 с.
11. Самсонова В.В., Киприянова Л.Д. Активные карстовые воронки в бассейне Средней Лены // Географические исследования Якутии: история, современность и перспективы: матер. всероссийс. науч.-практ. конф., посвящ. 100-летию со дня создания Якутского отдела Императорского Русского географич. общ-ва. – Якутск: ООО «Издательство Сфера», 2014. - С. 149- 154.
12. Самсонова В.В., Дручина О.Е., Самсонова М.А. Прогнозная оценка мерзлотно-климатических и геокриологических геотехнических рисков строительства и эксплуатации магистральных трубопроводов // Анализ, прогноз и управление природными рисками в современном мире (ГЕОРИСК-2015). Материалы 9-й Международной научно-практической конференции. 2015. С. 523-530.
13. Сухов Денис. Газпром построит до конца года две трети газопровода «Сила Сибири». Электронный ресурс. Источник: KP.RU. Код доступа: https://www.kp.ru/online/news/2975306/. Дата обращения: 22017-12-26 T19:29:30.
14.Фотиев С.М. Подземные воды и мерзлые породы Южно-Якутского угленосного бассейна. Москва : Наука, 1965. – 231 с.
15. Южная Якутия. Мерзлотно-гидрогеологические и инженерно-геологические условия Алданского горнопромышленного района. Под ред. Кудрявцева В.А. Москва : Изд-во МГУ, 1975. – 444 с.