Трансформации в геотехнике с помощью искусственного интеллекта: достижения, проблемы и перспективы. Часть 3
Бакли Р.Факультет (школа) инженерных наук имени Джеймса Ватта Университета Глазго, г. Глазго, Великобритания
Чиантиа М.О.Факультет (школа) естественных и инженерных наук Университета Данди, г. Данди, Великобритания; факультет наук о Земле и окружающей среде Университета Милана-Бикокка, г. Милан, Италия
Фебрианто Э.Факультет (школа) инженерных наук имени Джеймса Ватта Университета Глазго, г. Глазго, Великобритания
Фу Ц.Факультет (школа) инженерных наук и материаловедения Лондонского университета имени Королевы Марии, г. Лондон, Великобритания
Гао Ч.Факультет (школа) инженерных наук имени Джеймса Ватта Университета Глазго, г. Глазго, Великобритания
Гун Б.Колледж инженерных, дизайнерских и естественных наук при Лондонском университете имени Брунеля, г. Лондон, Великобритания
Хэнли К.Бакалавриат по химическим технологиям Эдинбургского университета, г. Эдинбург, Великобритания
Лопес Б.К.Ф.Л.Факультет гражданского и экологического строительства Университета Стратклайда, г. Глазго, Великобритания
Превитали М.Факультет (школа) естественных и инженерных наук Университета Данди, г. Данди, Великобритания
Руис-Лопес А.Компания Seequent («Сиквент») – дочерняя компания корпорации Bentley Systems по подземным технологиям, г. Крайстчерч, Новая Зеландия; инженерный факультет Лондонского Имперского колледжа, г. Лондон, Великобритания
Сунь Ц.Факультет (школа) инженерных наук имени Джеймса Ватта Университета Глазго, г. Глазго, Великобритания
Сурьясентана С.Факультет гражданского и экологического строительства Университета Стратклайда, г. Глазго, Великобритания
Чжан П.Факультет гражданского и экологического строительства Сингапурского национального университета, Сингапур
Продолжаем публиковать адаптированный перевод исчерпывающего обзора «Трансформации в геотехнике с помощью искусственного интеллекта: достижения, проблемы и перспективы», который был подготовлен международной группой исследователей. Подробная аннотация к этой работе приведена в начале первой части. Сегодня представляем третью часть, посвященную современным технологическим возможностям и перспективам интеграции искусственного интеллекта в геотехнику. Отметим, что нумерация рисунков здесь продолжает начатую в первых двух частях. Список литературы приведен полностью для всего обзора.
СОВРЕМЕННЫЕ ТЕХНОЛОГИЧЕСКИЕ ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ
Моделирование на основе искусственного интеллекта с ограничениями, связанными с законами физики
Создание моделей ИИ с ограничениями, обусловленными законами физики (физически ограниченных), было определено как многообещающее решение многих упомянутых выше проблем и, следовательно, стало считаться одним из приоритетных путей. На рисунке 11 представлены различные уровни, на которых модели машинного обучения могут быть ограничены физическими принципами, – от полностью основанных на данных (без ограничений) до полностью основанных на физических моделях (но с обновлениями через машинное обучение). Например, на уровнях три и четыре физические ограничения могут вводиться соответственно в небольшой степени или строго. Это иллюстрирует рисунок 12 на примере нейронной сети.
Также стоит отметить, что последние достижения в области динамических моделей, основанных на данных, показали возможность решения с их помощью сложных физических задач при ограниченном объеме данных измерений [173 и др.].
Таким образом, степень, в которой модель должна быть ограничена физическими законами, будет зависеть от нескольких факторов, включая объем и качество обучающих данных, сложность моделируемой задачи, риск появления ложных прогнозов и степень признания соответствующих физических законов в геотехническом сообществе.
Недавние работы продемонстрировали применимость нейронных сетей, обучаемых с учетом физических законов (физически информированных) для решения ключевых геотехнических задач, таких как трехмерное обобщение теории консолидации Терцаги [174], прогнозирование несущей способности буровых свай [175], оценка фильтрации через противофильтрационные завесы [176] и др. Эти работы сообщают о точности в пределах ±5% по сравнению с эталонными численными решениями проверенных моделей при многократном ускорении расчетов.
Моделирование с использованием разных уровней достоверности (многоуровневое)
Основная идея многоуровневого моделирования заключается в использовании:
1) наборов данных с низкими уровнями достоверности, таких как упрощенные аналитические зависимости или численные модели, которым может до некоторой степени не хватать точности, но которые позволяют сформировать большие обучающие выборки при минимальных вычислительных затратах;
2) наборов данных с высокими уровнями достоверности, таких как результаты полевых и/или лабораторных измерений, обладающих наибольшей точностью, но недостаточных для обучения ИИ из-за их, как правило, ограниченных объемов и высокой стоимости получения (см. таблицу).
Таблица. Примеры уровней точности для геотехники
Также следует отметить, что в рамках этой общей классификации уровней точности/достоверности есть дополнительные подклассы (например, подклассы внутри первого уровня точности выделяют в зависимости от типа испытания и типа материала). Многоуровневые модели могут принимать различные формы, но обычно они включают обучение одной модели на данных низкой достоверности и привлечение другой модели для изучения взаимосвязей между наборами данных низкого и высокого уровней точности, как показано на рисунке 13.
Хотя на рисунке 13 для наглядности представлен всего лишь двухэтапный процесс, в современных методах многоуровневого моделирования часто используются более сложные взаимодействия. Распространены следующие способы усовершенствования:
1) совместное обучение (когда две модели или более обучаются параллельно, обмениваясь информацией о своих предсказаниях, чтобы улучшить свою обобщающую способность и общую эффективность) или иерархическое обучение на остаточных ошибках/поправках (когда модель высокой точности рекурсивно обучается на корректировках выходных данных модели низкой точности, постепенно повышая точность через иерархическую последовательность коррекцировок) [177 и др.];
2) методы байесовского слияния данных (с последовательным обновлением вероятностных оценок о параметрах модели по мере поступления новых данных на основе теоремы Байеса), учитывающие неопределенность моделей низкой и высокой точности при формировании комбинированного предсказания [178 и др.];
3) глубокие нейросети (архитектура глубокого обучения) для многоуровневого моделирования, которые одновременно для всех уровней достоверности обучаются преобразованиям выходных данных модели низкой точности в высокоточные предсказания в рамках одной сети [179 и др.];
4) итеративные петли обратной связи, когда этапы обучения проходятся пошагово с многократными повторениями и обратной связью на каждом этапе, для повышения согласованности моделей и калибровки границ неопределенности [180 и др.].
Эти передовые подходы обеспечивают более надежную способность моделей к обобщению и количественную оценку уверенности в предсказаниях при решении сложных геотехнических задач. Направления дальнейшего развития этой области могут включать:
- усовершенствование методов для согласованного объединения моделей разной точности;
- оптимизацию их интеграции с помощью алгоритмов машинного обучения;
- разработку адаптивных стратегий, динамически распределяющих вычислительные ресурсы в зависимости от требований конкретной задачи.
Недавние достижения в области геотехники включают:
- многоуровневую нейронную сеть DeepONet, которая объединяет процессно-ориентированные модели на основе метода конечных элементов (с низкой достоверностью) с разреженными данными полевого мониторинга (с высокой достоверностью) для прогнозирования осадок при механизированной проходке тоннелей в реальном времени [179];
- многомасштабную генеративно-состязательную нейронную сеть (Generative Adversarial Network, GAN), которая строит разрезы подповерхностной среды по смешанным наборам данных изысканий с низкой и высокой точностью [181];
- физически информированные многоуровневые остаточные нейронные сети, которые используют механистические модели (основанные на законах механики) и лабораторные данные в ограниченном объеме для моделирования гидромеханических реакций грунтов и их механического поведения, описываемого конститутивными моделями [182–184].
Извлечение знаний
Извлечение знаний на основе данных откроет большие перспективы для трансформации геотехники. Двумя наиболее распространенными методами в этой сфере являются динамическое моделирование на основе данных [185] и машинное обучение с учетом физических закономерностей (физически информированное). Например, Чжан с коллегами [186] недавно продемонстрировали способность физически информированного машинного обучения самостоятельно извлекать закономерности, соответствующие теории консолидации Терцаги, непосредственно на основе данных, полученных при испытаниях на консолидацию. На рисунке 14 представлена схема процесса обратного моделирования с помощью физически информированной нейронной сети, где сначала на основе данных извлекается управляющее уравнение в частных производных (описывающее поведение процесса) а затем оно решается для определения неизвестных параметров (в данном случае коэффициентов консолидации). Этот процесс является итеративным и использует физически информированную функцию потерь, что позволяет минимизировать ошибку предсказания во всей исследуемой пространственно-временной области.
По мере расширения доступа к геотехническим данным будут открываться все новые возможности извлечения новых представлений, принципов и механических закономерностей из сложных геотехнических процессов, которые в настоящее время описываются только эмпирическими методами.
Создание цифровых двойников
Согласованная интеграция цифровых моделей с информацией о рабочих процессах и поведении физических систем позволяет создавать цифровые копии реальных объектов в реальном времени (цифровых двойников) для возможности моделирования и прогнозирования разных сценариев. Цифровой двойник постоянно обновляется, сохраняя актуальность, на основе данных, получаемых от физических датчиков, что позволяет проводить диагностику состояния объекта и его виртуальный контроль. Алгоритмы машинного обучения обеспечивают автономные обновления и прогнозы, делая создание цифровых двойников важнейшим подходом для будущей роботизации и автоматизации работ на строительных площадках. В геотехнике это направление будет развиваться в сторону интегрированных цифровых двойников, объединяющих модели грунтовых оснований, фундаментов, инженерных сетей и сооружений, что позволит формировать целостное понимание взаимодействий и взаимозависимостей в общей системе (рис. 15).
В последнее время начинается работа по внедрению в практику цифровых двойников для подземных и геотехнических систем. Связанные с этим исследования в области гражданской инфраструктуры (например, создание цифрового двойника железнодорожного моста, снабженного системой мониторинга, на основе статистического метода конечных элементов [3]) демонстрируют возможность использования методов интеграции данных и физических знаний с учетом неопределенностей также и в геотехнике. Так, Латиф с соавторами [171] осуществили потоковую передачу эксплуатационных данных тоннелепроходческого комплекса цифровому двойнику на базе машинного обучения для прогнозирования характеристик и визуализации проходки тоннеля в реальном времени. Аподжи с коллегами [187] представили концепцию уровней принятия решений с использованием искусственного интеллекта для будущих механизированных тоннелепроходческих работ на основе анализа больших данных. Чжао с соавторами [188] исследовали, как функции цифровых двойников могут поддерживать процессы строительства, обеспечения безопасности и управления жизненным циклом тоннелей.
Человеко-машинное взаимодействие с использованием больших языковых моделей
Большие языковые модели (например, GPT-4) обладают значительным потенциалом для развития взаимодействия человека с алгоритмами ИИ в геотехнике. Развив подходы, заложенные в более ранних моделях обработки естественного языка, они способны извлекать из текстов более глубокие знания и открывают новые возможности для сотрудничества специалистов с искусственным интеллектом. Интерфейсы, основанные на больших языковых моделях, обещают сделать применение таких систем более интуитивным и динамичным (например, рис. 16).
Однако универсальные (для широкого спектра задач) большие языковые модели часто имеют затруднения при ответах на специализированные геотехнические запросы, выходящие за рамки данных, использованных на этапе предварительного обучения. Это ограничение можно преодолеть с помощью малозатратной донастройки модели или генерации текста с помощью расширенного поиска и извлечения информации (Retrieval-Augmented Generation, RAG) из специализированного корпуса/набора текстов, сформированного и периодически обновляемого группой специалистов.
Первые исследования в этом направлении показали, что большая языковая модель GPT-4 способна отвечать на вопросы учебного уровня по геотехнике с точностью около 70% и составлять проекты технических заданий на инженерно-геологические изыскания [189]. Кумар [172] продемонстрировал достоверную интерпретацию геотехнических данных с использованием тщательно разработанных запросов, а Сюй с коллегами [190] представили GeoLLM – специализированную большую языковую модель, дообученную для интеллектуальной автоматизации геотехнического проектирования. В недавних исследованиях также рассматривается применение методов на основе больших языковых моделей, например генерации текста с применением расширенного поиска (RAG) и обучения на небольшом числе примеров, для решения различных задач геотехнического проектирования, включая планирование организации работ на строительной площадке [191], геологическое моделирование [192] и проектирование фундаментов [193]. Эти работы подтверждают практический потенциал больших языковых моделей, в то же время подчеркивая необходимость управления проблемами, связанными с качеством запросов и с возможными «галлюцинациями» модели.
Генеративное моделирование (моделирование с генерацией данных)
Генеративный искусственный интеллект, основанный на генеративно-состязательных сетях [194] и получивший дальнейшее развитие с помощью генеративных моделей на основе диффузии (диффузионных) [195], открывает для геотехники три основные возможности. Во-первых, он может генерировать реалистичные синтетические наборы данных, что способствует улучшению многоуровневого моделирования и численных расчетов.
Во-вторых, генеративный ИИ способен автоматизированно осуществлять процессы проектирования с учетом ограничений, позволяя быстро исследовать и оценивать результаты геотехнического планирования, сокращать итерационные циклы и находить новые решения.
В-третьих, обучаясь на исторических и специфичных для конкретной строительной площадки данных, генеративные модели могут предсказывать потенциальные сценарии разрушений/отказов и обеспечивать информацией разработку проактивных стратегий снижения рисков.
В совокупности эти возможности открывают путь к еще более инновационной геотехнической практике, более быстрому и безопасному выполнению работ в отрасли.
Среди недавних адаптаций для геотехнической отрасли – генеративно-состязательная нейросеть SchemaGAN [196], которая создает правдоподобные геотехнические модели подповерхностной среды на основе разреженных данных статического зондирования конусом (CPT) и превосходит по достоверности результаты применения метода интерполяции, основанного на кригинге.
Чжоу и Ши [181] при построении двумерных разрезов применили многомасштабную генеративно-состязательную нейросеть для объединения данных изысканий различной степени достоверности, что позволило значительно снизить среднеквадратическую ошибку по сравнению с классическими методами инверсии.
Для задач анализа временнЫх рядов данных Ге с соавторами [197] представили RGAN-LS – рекуррентную генеративно-состязательную нейросеть, которая увеличивает объем ограниченных данных по смещениям и повышает точность прогнозирования движения оползней в «слепых» тестах (с заранее неизвестными исходными данными или ответами) на величину вплоть до 18%.
Обучение моделей преобразования данных (операторов) и графовые модели
Для решения задач вычислительной механики недавно были адаптированы фреймворки нейронных операторов, то есть платформы для обучения нейронных моделей преобразования данных, такие как Wavelet Neural Operator (нейронный оператор с использованием вейвлет-преобразований) и Physics-Informed Geometry-Aware Neural Operator (нейронный оператор с учетом физических законов и геометрических параметров). Они обеспечили ускорение вычислений, не связанное с размером или детализацией сетки дискретизации пространства, в 50–100 раз по сравнению с методом конечных элементов и в то же время позволили сохранить согласованность с физическими законами [198, 199].
Одновременный прогресс в разработке вычислительных моделей (симуляторов) на основе графовых нейронных сетей позволяет эффективно рассчитывать поведение гранулярных потоков на уровне отдельных частиц. Так, Цзян с соавторами [200] показали, что такие симуляторы способны точно прогнозировать динамику разрушения гранулярных тел и эффективно оптимизировать параметры метода дискретных элементов. При одном из более поздних исследований дифференцируемая суррогатная (замещающая) модель на основе нейросети воспроизвела динамику сползания слагавшего склон многослойного грунтового массива в 145 раз быстрее по сравнению с методом материальной точки, при этом поддерживая возможность обратного определения параметров модели [201].
Эти подходы, основанные на обучении моделей преобразования данных (операторов) и на графовых моделях (графовых симуляторах), открывают путь к созданию многомасштабных дифференцируемых вычислительных моделей геомеханических систем в реальном времени.
ЗАКЛЮЧЕНИЕ
В данной статье описан потенциал внедрения искусственного интеллекта в геотехнику, обусловленного необходимостью решения трудных задач, возникающих при сложных взаимодействиях инженерных сооружнений, грунтов, подземных вод и других элементов окружающей среды. Освещены недавние достижения в популярных направлениях применения ИИ в геотехнике, включая интеллектуальные инженерные изыскания, моделирование поведения грунтов и оптимизацию процессов геотехнического проектирования. Также продемонстрировано, как технологии искусственного интеллекта уже способствуют созданию более точных прогнозных моделей и упрощению рабочих процессов. С помощью приведенных примеров наглядно показано, что ИИ способен приносить ощутимую пользу отрасли уже сегодня.
Однако выявлено несколько характерных для геотехники ключевых проблем, которые надо решить, чтобы полностью реализовать потенциал использования в ней искусственного интеллекта. Важнейшей проблемой остается нехватка данных, которая может препятствовать машинному обучению моделей из-за сложных взаимодействий в любом геотехническом проекте. Сложность корректного применения ИИ в геотехнике также связана с объяснимостью моделей, их универсальностью (адаптацией к разным условиям) и учетом факторов неопределенности. Критически важно объединить технологии искусственного интеллекта с традиционными геотехническими моделями, а также создать эталонные тесты и критерии оценки моделей, чтобы обеспечить согласованность моделей ИИ с существующими геотехническими знаниями, преодолеть возможные несоответствия и повысить доверие геотехнического сообщества к такой интеграции.
И наконец, в статье рассмотрены приоритетные направления развития технологий искусственного интеллекта в геотехнике, включая человеко-машинное взаимодействие с использованием больших языковых моделей, моделирование с разными уровнями достоверности, извлечение знаний, создание цифровых двойников, генеративные модели, обучение моделей преобразования данных (операторов), графовые модели (графовые симуляторы).
Для достижения прогресса в этой области в соответствии с существующими геотехническими принципами, по мнению авторов, необходим междисциплинарный подход, предполагающий сотрудничество между исследователями в области ИИ и геотехниками. Этические аспекты, в частности вопросы необъективности и подотчетности, говорят о важности ответственного использования искусственного интеллекта в рамках правового поля.
-
Данная работа в первоначальном виде была представлена на Первом симпозиуме по применению искусственного интеллекта в геотехнике, проведенном в мае 2023 года в городе Глазго (Великобритания). Это мероприятие было организовано с финансовой поддержкой гранта Alan Turing Development Award (гранта британского Национального института имени Алана Тьюринга по развитию анализа данных и искусственного интеллекта) при софинансировании со стороны Фонда ускорения внедрения результатов исследований Научного совета по инженерным и физическим наукам Великобритании (EPSRC Impact Acceleration Account) при Университете Глазго.
ИСТОЧНИК ДЛЯ ПЕРЕВОДА
Sheil B., Anagnostopoulos C., Buckley R., Ciantia M.O., Febrianto E., Fu J., Gao Z., Geng X., Gong B., Hanley K., He P., Kolomvatsos K., Lopes B.C.F.L., Ninic J., Previtali M., Rezania M., Ruiz-Lopez A., Sun J., Suryasentana S., Taborda D., Utili S., Whyte S., Zhang P. Artificial intelligence transformations in geotechnics: progress, challenges and future enablers // Computers and Geotechnics. Elsevier, 2026. Vol. 189. Article 107604. URL: https://doi.org/10.1016/j.compgeo.2025.107604 (in press).
СПИСОК ЛИТЕРАТУРЫ, ИСПОЛЬЗОВАННОЙ АВТОРАМИ ПЕРЕВЕДЕННОЙ СТАТЬИ
- Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., Wang Y. Artificial intelligence in healthcare: past, present and future // Stroke Vascular Neurol. 2017. Vol. 2. № 4.
- Goodell J.W., Kumar S., Lim W.M., Pattnaik D. Artificial intelligence and machine learning in finance: identifying foundations, themes, and research clusters from bibliometric analysis // J. Behav. Exp. Financ. 2021. Vol. 32. Article 100577.
- Febrianto E., Butler L., Girolami M., Cirak F. Digital twinning of self-sensing structures using the statistical finite element method // Data-Centric Eng. 2022. Vol. 3. № e31.
- Sun F., Febrianto E., Fernando H., Butler L., Cirak F., Hoult N. Data-informed statistical finite element analysis of rail buckling // Comput. Struct. 2023. Vol. 289. Article 107163.
- Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ј., Polosukhin I. Attention is all you need // Adv. Neural Informat. Process. Syst. 2017. Vol. 30.
- Sheil B.B., Suryasentana S.K., Cheng W.C. Assessment of anomaly detection methods applied to microtunneling // J. Geotech. Geoenviron. Eng. 2020. Vol. 146. № 9. Article 04020094.
- Sheil B.B., Suryasentana S.K., Mooney M.A., Zhu H. Machine learning to inform tunnelling operations: recent advances and future trends // Proc. Inst. Civil Eng. – Smart Infrastruct. Constr. 2020. Vol. 173. № 4. P. 74–95.
- Stuyts B., Suryasentana S.K. Applications of data science in offshore geotechnical engineering: state of practice and future perspectives // 9th International SUT OSIG Conference. 2023.
- Suryasentana S.K., Sheil B.B. Demystifying the connections between Gaussian process regression and kriging // 9th International SUT OSIG Conference. 2023. P. 1–8.
- Russell S.J., Norvig P. Artificial intelligence: a modern approach. London, 2010.
- MacKay D.J.C. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
- Kennedy M.C., O’Hagan A. Bayesian calibration of computer models // J. R. Stat. Soc. Ser. B (Stat Methodol.). 2001. Vol. 63. P. 425–464.
- Girolami M., Febrianto E., Yin G., Cirak F. The statistical finite element method (statFEM) for coherent synthesis of observation data and model predictions // Comput. Methods Appl. Mech. Eng. 2021. Vol. 375. Article 113533.
- Hu J.Z., Zhang J., Huang H.W., Zheng J.G. Value of information analysis of site investigation program for slope design // Comput. Geotech. 2021. Vol. 131. Article 103938.
- Zhao T., Wang Y. Determination of efficient sampling locations in geotechnical site characterization using information entropy and Bayesian compressive sampling // Can. Geotech. J. 2019. Vol. 56. № 11. P. 1622–1637.
- Yoshida I., Tasaki Y., Tomizawa Y. Optimal placement of sampling locations for identification of a two-dimensional space // Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2022. Vol. 16. № 1. P. 98–113.
- Li J., Cassidy M.J., Huang J., Zhang L., Kelly R. Probabilistic identification of soil stratification // Geotechnique. 2016. Vol. 66. № 1. P. 16–26.
- Wang Y., Huang K., Cao Z. Probabilistic identification of underground soil stratification using cone penetration tests // Can. Geotech. J. 2013. Vol. 50. № 7. P. 766–776.
- Houlsby N.M.T., Houlsby G.T. Statistical fitting of undrained strength data // Geotechnique. 2013. Vol. 63. № 14. P. 1253–1263.
- Ching J., Wang J.-S., Juang C.H., Ku C.-S. Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method // Canadian Geotechnical J. 2015. Vol. 52. № 12. P. 1993–2007.
- Suryasentana S.K., Lawler M., Sheil B.B., Lehane B.M. Probabilistic soil strata delineation using DPT data and Bayesian changepoint detection // J. Geotech. Geoenviron. Eng. 2023. Vol. 149 . № 4. Article 06023001.
- Wang Y., Hu Y., Zhao T. Cone Penetration test (CPT)-based subsurface soil classification and zonation in two-dimensional vertical cross section using Bayesian compressive sampling // Can. Geotech. J. 2020. Vol. 57. № 7. P. 947–958.
- Cao Z.J., Zheng S., Li, D.Q., Phoon K.K. Bayesian identification of soil stratigraphy based on soil behavior type index // Can. Geotech. J. 2019. Vol. 56. № 4. P. 570–586.
- Gong W., Zhao C., Juang C.H., Tang H., Wang H., Hu X. Stratigraphic uncertainty modelling with random field approach // Comput. Geotech. 2020. Vol. 125. Article 103681.
- Shuku T., Phoon K.K., Yoshida I. Trend estimation and layer boundary detection in depth-dependent soil data using sparse Bayesian lasso // Comput. Geotech. 2020. Vol. 128. Article 103845.
- Hegazy Y.A., Mayne P.W. Objective site characterization using clustering of piezocone data // J. Geotech. Geoenviron. Eng. 2002. Vol. 128. № 12. P. 986–996.
- Zhao T., Wang Y. Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods // Eng. Geol. 2020. Vol. 265. Article 105430.
- Zhou X., Shi P., Sheil B., Suryasentana S. Knowledge-based U-Net and transfer learning for automatic boundary segmentation // Adv. Eng. Inf. 2024. Vol. 59. Article 102243.
- Suryasentana S.K., Sheil B.B., Lawler M. Assessment of Bayesian changepoint detection methods for soil layering identification using cone penetration test data // Geotechnics. 2024. Vol. 4. № 2 . P. 382–398.
- Firouzianbandpey S., Ibsen L.B., Griffiths D.V., Vahdatirad M.J., Andersen L.V., Sшrensen J.D. Effect of spatial correlation length on the interpretation of normalized CPT data using a kriging approach // J. Geotech. Geoenviron. Eng. 2015. Vol. 141. № 12. Article 04015052.
- Cai Y., Li J., Li X., Li D., Zhang L. Estimating soil resistance at unsampled locations based on limited CPT data // Bull. Eng. Geol. Environ. 2019. Vol. 78. P. 3637–3648.
- He X., Xu H., Sabetamal H., Sheng D. Machine learning aided stochastic reliability analysis of spatially variable slopes // Comput. Geotech. 2020. Vol. 126. Article 103711.
- Rahman M.H., Abu-Farsakh M.Y., Jafari N. Generation and evaluation of synthetic cone penetration test (CPT) data using various spatial interpolation techniques // Can. Geotech. J. 2021. Vol. 58. № 2. P. 224–237.
- Wang Y., Zhao T. Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling // Geotechnique. 2017. Vol. 67. № 6. P. 523–536.
- Wang Y., Li P. Data-driven determination of sample number and efficient sampling locations for geotechnical site investigation of a cross-section using Voronoi diagram and Bayesian compressive sampling // Comput. Geotech. 2021. Vol. 130. Article 103898.
- Zhao T., Xu L., Wang Y. Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using markov chain Monte Carlo simulation // Eng. Geol. 2020. Vol. 273. Article 105670.
- Shi C., Wang Y. Development of subsurface geological cross-section from limited site-specific boreholes and prior geological knowledge using iterative convolution XGBoost // J. Geotech. Geoenviron. Eng. 2021. Vol. 147. № 9. Article 04021082.
- Shi C., Wang Y. Nonparametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics // Can. Geotech. J. 2021. Vol. 58. № 2. P. 261–280.
- Sauvin G., Vanneste M., Vardy M.E., Klinkvort R.T., Carl Fredrik F. Machine learning and quantitative ground models for improving offshore wind site characterization // Offshore Technol. Conf. (OTC 2019), Houston, Texas, USA. 2019 . Vol. 2. P. 1323–1339. DOI:10.4043/29351-MS.
- Wu S., Zhang J.M., Wang R. Machine learning method for CPTu based 3D stratification of New Zealand geotechnical database sites // Adv. Eng. Inf. 2021. Vol. 50. Article 101397.
- Xie J., Huang J., Lu J., Burton G.J., Zeng C., Wang Y. Development of two- dimensional ground models by combining geotechnical and geophysical data // Eng. Geol. 2022. Vol. 300. Article 106579.
- Huang J., Zheng D., Li D.Q., Kelly R., Sloan S.W. Probabilistic characterization of two-dimensional soil profile by integrating cone penetration test (CPT) with multi-channel analysis of surface wave (MASW) data// Can. Geotech. J. 2018. Vol. 55. № 8. P. 1168–1181.
- Ghose R., Goudswaard J. Integrating S-wave seismic-reflection data and cone-penetration-test data using a multiangle multiscale approach // Geophysics. 2004. Vol. 69. № 2. P. 440–459.
- Wellmann J.F., De La Varga M., Murdie R.E., Gessner K., Jessell M. Uncertainty estimation for a geological model of the Sandstone greenstone belt, Western Australia – insights from integrated geological and geophysical inversion in a Bayesian inference framework // Geol. Soc. Lond. Spec. Publ. 2018. Vol. 453. № 1. P. 41–56.
- Medina-Cetina Z., Son J., Moradi M. Bayesian stratigraphy integration of geophysical, geological, and geotechnical surveys data // Offshore Technol. Conf. (OTC 2019), Houston, Texas, USA. 2019. Vol. 5. P. 3431–3440.
- Xu J., Wang Y., Zhang L. 2021. Interpolation of extremely sparse geo-data by data fusion and collaborative Bayesian compressive sampling // Comput. Geotech. Vol. 134. Article 104098.
- Xu J., Wang Y., Zhang L. Fusion of geotechnical and geophysical data for 2D subsurface site characterization using multi-source Bayesian compressive sampling // Can. Geotech. J. 2022. Vol. 59. № 10. P. 1756–1773.
- Christensen C.W., Harrison E.J., Pfaffhuber A.A., Lund A.K. A machine learning-based approach to regional-scale mapping of sensitive glaciomarine clay combining airborne electromagnetics and geotechnical data // Near Surf. Geophys. 2021. Vol. 19. № 5. P. 523–539.
- Chen J., Vissinga M., Shen Y., Hu S., Beal E., Newlin J. Machine learning–based digital integration of geotechnical and ultrahigh-frequency geophysical data for offshore site characterizations // J. Geotech. Geoenviron. Eng. 2021. Vol. 147. № 12. Article 04021160.
- Coelho B.Z., Karaoulis M. Data fusion of geotechnical and geophysical data for three-dimensional subsoil schematisations // Adv. Eng. Inf. 2022. Vol. 53. Article 101671.
- Roscoe K.H., Schofield, A.N., Wroth C.P. On the yielding of soils // Geotechnique. 1958. Vol. 8. № 1. P. 22–53.
- Schofield A.N., Wroth C.P. Critical state soil mechanics. London, UK: McGraw Hill, 1968.
- Been K., Jefferies M.G. A state parameter for sands // Geotechnique. 1985. Vol. 35. № 2 . P. 99–112.
- Reynolds O. LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1885. Vol. 20. № 127. P. 469-481. DOI:10.1080/14786448508627791.
- Taylor D.W. Fundamentals of Soil Mechanics. New York: John Wiley & Sons, 1948.
- Bolton M.D. The strength and dilatancy of sands // Geotechnique. 1986. Vol. 36. № 1. P. 65–78.
- Bishop A.W. The strength of soils as engineering materials // Geotechnique. 1966. Vol. 16. P. 91–128.
- Amarasinghe S.F., Parry R.H. Anisotropy in heavily overconsolidated kaolin // J. Geotech. Eng. Div. ASCE, 1975. Vol. 101. № GT12. P. 1277–1292.
- Burland J.B. On the compressibility and shear strength of natural clays // Geotechnique .1990. Vol. 40. № 3. P. 329–378.
- Leroueil S., Vaughan P.R. The general and congruent effects of structure in natural soils and weak rocks // Geotechnique. 1990. Vol. 40. № 3. P. 467–488.
- Liu W.Z., Shi M.L., Miao L.C., Xu L.R., Zhang D.W. Constitutive modeling of the destructuration and anisotropy of natural soft clay // Comput. Geotech. 2013. Vol. 51. P. 24–41.
- Lade P.V., Duncan J.M. Stress-path dependent behavior of cohesionless soil // J. Geotech. Eng. Div. 1976. Vol. 102. № 1. P. 51–68.
- Suklje L. The analysis of the consolidation process by the isotaches method // Proc. 4th Int. Conf. Soil Mech Found. Eng., London, 1957. Vol. 1. P. 200–206.
- Bjerrum L. Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings // Geotechnique. 1967. Vol. 17. № 2. P. 83–119.
- Roscoe K.H., Bassett R.H., Cole E.R.L. Principal axes observed during simple shear of a sand // Proc., Geotechnical Conf. on Shear Strength Properties of Natural Soils and Rocks, Oslo, Norwegian Geotechnical Society, 1967. P. 231–237.
- Kim Y.T., Leroueil S. Modeling the viscoplastic behaviour of clays during consolidation: application to Berthierville clay in both laboratory and field conditions // Can. Geotech. J. 2001. Vol. 38. № 3. P. 484–497.
- Yin Z.-Y., Karstunen M., Chang C.S., Koskinen M., Lojander M. Modeling time-dependent behavior of soft sensitive clay // J. Geotech. Geoenviron. Eng. 2011 . Vol. 137. № 11. P. 1103–1113.
- Su D., Yang Z.X. Drained analyses of cylindrical cavity expansion in sand incorporating a bounding-surface model with state-dependent dilatancy // App. Math. Model. 2019. Vol. 68. P. 1–20.
- Kang X., Xia Z., Chen R., Ge L., Liu X. The critical state and steady state of sand: a literature review // Mar. Georesour. Geotec. 2019. Vol. 37. № 9. P. 1105–1118.
- Wan R.G., Guo P.J. A simple constitutive model for granular soils: modified stress-dilatancy approach // Comput. Geotech. 1988. Vol. 22. P. 109–133.
- Su L.-J., Yin J.-H., Zhou W.-H. Influences of overburden pressure and soil dilation on soil nail pull-out resistance // Comput. Geotech. 2010. Vol. 37. № 4. P. 555–564.
- Dafalias Y.F. An anisotropic critical state soil plasticity model // Mech. Res. Comm. 1986. Vol. 13 . № 6. P. 341–347.
- Yin Z.Y., Chang C.S., Karstunen M., Hicher P.Y. An anisotropic elastic–viscoplastic model for soft clays // Int. J. Solids Struct. 2010. Vol. 47. № 5. P. 665–677.
- Kang X., Xia Z., Chen R.P. Measurement and correlations of K0 and Vs anisotropy of granular soils // Proc. Inst. Civil Eng.-Geotech. Eng. 2020. Vol. 173. № 6. P. 546–561.
- Hu X., Zhang Y., Guo L., Wang J., Cai Y., Fu H., Cai Y. Cyclic behavior of saturated soft clay under stress path with bidirectional shear stresses // Soil Dyn. Earthq. Eng. 2018. Vol. 104. P. 319–328.
- Tian Y., Yao Y.P. Modelling the non-coaxiality of soils from the view of cross-anisotropy // Comput. Geotech. 2017. Vol. 86. P. 219–229.
- Zhou M.M., Meschke G. A three-phase thermo-hydro-mechanical finite element model for freezing soils // Int. J. Numer. Anal. Meth. Geomech. 2013. Vol. 37. № 18. P. 3173–3193.
- Dafalias Y.F., Manzari M.T. Simple plasticity sand model accounting for fabric change effects // Journal of Engineering Mechanics. 2004. Vol. 130. № 6. P. 622–634.
- Ghaboussi J., Carret J., Wu X. Material modelling with neural networks // Proceedings of the international conference on numerical methods in engineering: theory and applications, Swansea, UK, 1990. P. 701–717.
- Ghaboussi J., Carret J., Wu X. Knowledge-based modelling of material behaviour with neural networks // J. Eng. Mech. Div. 1991. Vol. 117. № 1. P. 132–153.
- Ellis G.W., Yao C., Zhao R. Neural network modeling of the mechanical behavior of sand // Proc. of the 9th ASCE Conference on Engineering Mechanics, Texas, 1992. P. 421–424.
- Ellis G.W., Yao C., Zhao R., Penumadu D. Stress-strain modeling of sands using artificial neural netwoks // ASCE J. Geotech. Eng. Div. 1995. Vol. 121. № 5. P. 429–435.
- Ghaboussi J., Sidarta D.E. New nested adaptive neural networks (NANN) for constitutive modeling // Comput. Geotech. 1998. Vol. 22 . № 1. P. 29–52.
- Penumadu D., Zhao R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN) // Comput. Geotech. 1999. Vol. 24. № 3. P. 207–230.
- Javadi A.A., Rezania M., Applications of artificial intelligence and data mining techniques in soil modeling // Geomech. Eng. 2009. Vol. 1. № 1. P. 53–74.
- Shin H.S., Pande G.N. On self-learning finite element code based on monitored response of structures // Comput. Geotech. 2000. Vol. 27. P. 161–178.
- Lefik M., Schrefler B.A. Artificial neural network as an incremenal non-linear constitutive model for finite element code // Comput. Methods Appl. Mech. Eng. 2003. Vol. 192. P. 3265–3283.
- Hashash Y.M.A., Jung S., Ghaboussi J. Numerical implementation of a neural network based material model in finite element analysis // Int. J. Numer. Meth. Eng. 2004. Vol. 59. P. 989–1005.
- Javadi A.A., Rezania M. Intelligent finite element method: an evolutionary approach to constitutive modeling // Adv. Eng. Inf. 2009. Vol. 23. № 4. P. 442–451.
- Raissi M., Perdikaris P., Karniadakis G.E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations // J. Comput. Phys. 2019. Vol. 378. P. 686–707.
- Masi F., Stefanou I., Vannucci P., Maffi-Berthier V. Thermodynamics-based artificial neural networks for constitutive modeling // J. Mech. Phys. Solids. 2021. Vol. 147. Article 104277.
- Masi F., Stefanou I. Multiscale modeling of inelastic materials with thermodynamics-based artificial neural networks (TANN) // Comput. Methods Appl. Mech. Eng. 2022. Vol. 398. Article 115190.
- Weinan E., Yu B. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems // Commun. Math. Stat. 2018. Vol. 6. P. 1–12.
- Liu D., Wang Y. Multi-fidelity physics-constrained neural network and its application in materials modeling // J. Mech. Des. 2019. Vol. 141. № 12. Article 121403.
- Sun L., Gao H., Pan S., Wang J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data // Comput. Meth. Appl. Mech. Eng. 2020 . Vol. 361. Article 112732.
- Cuomo S., Di Cola V.S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific machine learning through physics-informed neural networks: where we are and what’s next // J. Sci. Comput. 2022. Vol. 92. Article 88.
- Vlassis N.N., Sun W. Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening // Comput. Meth. Appl. Mech. Eng. 2021. Vol. 377 . Article 113695.
- Flaschela M., Kumar S., De Lorenzis L. Unsupervised discovery of interpretable hyperelastic constitutive laws // Comput. Meth. Appl. Mech. Eng. 2021. Vol. 381. Article 113852.
- Zhang P., Yin Z.Y., Sheil B. Interpretable data-driven constitutive modelling of soils with sparse data // Comput. Geotech. 2023. Vol. 160. Article 105511.
- Zhang J., Wang Z., Hu J., Xiao S., Shang W. Bayesian machine learning-based method for prediction of slope failure time // J. Rock Mech. Geotech. Eng. 2022. Vol. 14. № 4. P. 1188–1199.
- Das B.M. Principles of geotechnical engineering. Cengage Learning, 2021.
- Provenzano P., Ferlisi S., Musso A. Interpretation of a model footing response through an adaptive neural fuzzy inference system // Comput. Geotech. 2004. Vol. 31. № 3. P. 251–266.
- Shahnazari H., Tutunchian M.A. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: an evolutionary approach // KSCE J. Civ. Eng. 2012. Vol. 16. P. 950–957.
- Tsai H.C., Tyan Y.Y., Wu Y.W., Lin Y.H. Determining ultimate bearing capacity of shallow foundations using a genetic programming system // Neural Comput. & Appl. 2013. Vol. 23. P. 2073–2084.
- Lawal A.I., Kwon S. Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations // J. Rock Mech. Geotech. Eng. 2023. Vol. 15. № 3. P. 747–759.
- Shahin M.A., Maier H.R., Jaksa M.B. Predicting settlement of shallow foundations using neural networks // J. Geotech. Geoenviron. Eng. 2002. Vol. 128. № 9. P. 785–793.
- Shahin M.A., Maier H.R., Jaksa M.B. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models // Comput. Geotech. 2003. Vol. 30. № 8. P. 637–647.
- Rezania M., Javadi A.A. A new genetic programming model for predicting settlement of shallow foundations // Can. Geotech. J. 2007. Vol. 44. № 12. P. 1462–1473.
- Samui P., Sitharam T.G. Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils // Int. J. Numer. Anal. Meth. Geomech. 2008. Vol. 32. № 17. P. 2033–2043.
- Zhang J., Dias D., An L., Li, C. Applying a novel slime mould algorithm-based artificial neural network to predict the settlement of a single footing on a soft soil reinforced by rigid inclusions // Mech. Adv. Mater. Struct. 2022. Vol. 31. № 1.
- Vergote T.A., Raymackers S. Building a framework for probabilistic assessment accounting for soil, spatial, operational and model uncertainty, applied to pile driveability // Ocean Eng. 2022. Vol. 266. Article 113181.
- Buckley R., Chen Y.M., Sheil B., Suryasentana S., Xu D.D., James R.M. Bayesian optimization for CPT-based prediction of impact pile drivability // J. Geotech. Geoenviron. Eng. 2023. Vol. 149. № 11. Article 04023100.
- Pal M., Deswa S. Modelling pile capacity using Gaussian process regression // Comput. Geotech. 2010. Vol. 37. № 7–8. P. 942–947.
- Alkroosh I., Nikraz H. Correlation of pile axial capacity and CPT data using gene expression programming // Geotech. Geol. Eng. 2011. Vol. 29. P. 725–748.
- Kordjazi A., Nejad F.P., Jaksa M.B. Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data // Comput. Geotech. 2014. Vol. 55. P. 91–102.
- Kardani N., Zhou A., Nazem M., Shen S.L. Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches // Geotech. Geol. Eng. 2020. Vol. 38. P. 2271–2291.
- Alexander J.S., Buckley R.M., Whyte S.A. Machine learning to expedite concept monopile design // Proceedings of the XVIII ECSMGE “Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society”, Lisbon, 2024. P. 2760–2763.
- Suryasentana S.K., Burd H.J., Byrne B.W., Aghakouchak A., Sorensen T. Comparison of machine learning models in a data-driven approach for scalable and adaptive design of laterally-loaded monopile foundations // International Symposium on Frontiers in Offshore Geotechnics. Deep Foundations Institute (DFI), USA, 2020. ISBN9780976322948.
- Muduli P.K., Das S.K., Das M.R. Prediction of lateral load capacity of piles using extreme learning machine // Int. J. Geotech. Eng. 2013. Vol. 7. № 4. P. 388–394.
- Taherkhani A.H., Mei Q., Han F. Capacity prediction and design optimization for laterally loaded monopiles in sandy soil using hybrid neural network and sequential quadratic programming // Comput. Geotech. 2023. Vol. 163. Article 105745.
- Nejad F.P., Jaksa M.B., Kakhi M., McCabe B.A. Prediction of pile settlement using artificial neural networks based on standard penetration test data // Comput. Geotech. 2009. Vol. 36. № 7. P. 1125–1133.
- Jebur A.A., Atherton W., Al Khaddar R.M., Loffill E. Settlement prediction of model piles embedded in sandy soil using the Levenberg-Marquardt (LM) training algorithm // Geotech. Geol. Eng. 2018. Vol. 36. P. 2893–2906.
- Ge Q., Li C., Yang F. Support vector machine to predict the pile settlement using novel optimization algorithm // Geotech. Geol. Eng. 2023. Vol. 41. № 7 . P. 1–15.
- Khatti J., Samadi H., Grover K.S. Estimation of settlement of pile group in clay using soft computing techniques // Geotech. Geol. Eng. 2023. Vol. 42. № 3. P. 1–32.
- Alm T., Hamre L. Soil model for pile driveability predictions based on CPT interpretations // Proc. of the 15th Int. Conf. on Soil Mechanics and Geotechnical Engineering. Boca Raton, FL, USA: CRC Press, 2001. P. 1297–1302.
- Sheil B.B., Suryasentana S.K., Templeman J.O., Phillips B.M., Cheng W.C., Zhang L. Prediction of pipe-jacking forces using a Bayesian updating approach // J. Geotech. Geoenviron. Eng. 2022. Vol. 148. № 1. Article 04021173.
- Deng L., Smith A., Dixon N., Yuan H. Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements // Eng. Geol. 2021. Vol. 293. Article 106315.
- Xu H., He X., Shan F., Niu G., Sheng D. Machine learning in the stochastic analysis of slope stability: a state-of-the-art review // Modelling. 2023 . Vol. 4. № 4 . P. 426–453.
- Luo Z., Bui X.N., Nguyen H., Moayedi H. A novel artificial intelligence technique for analyzing slope stability using PSO-CA model // Eng. Comput. 2021. Vol. 37. P. 533–544.
- Mahmoodzadeh A., Mohammadi M., Farid H.A.H., Hashim I.H., Nariman A.S., Nejati H.R. Prediction of safety factors for slope stability: comparison of machine learning techniques // Natural Hazards. 2022. Vol. 111. P. 1771–1799.
- Aminpour M., Alaie R., Khosravi S., Kardani N., Moridpour S., Nazem M., Slope stability machine learning predictions on spatially variable random fields with and without factor of safety calculations // Comput. Geotech. 2023. Vol. 153. Article 105094.
- Xiao T., Zhang L.M., Cheung R.W.M., Lacasse S. Predicting spatio-temporal man-made slope failures induced by rainfall in Hong Kong using machine learning techniques // Geotechnique. 2023. Vol. 73. № 9. P. 749–765.
- Guardiani C., Soranzo E., Wu W. Time-dependent reliability analysis of unsaturated slopes under rapid drawdown with intelligent surrogate models // Acta Geotech. 2022. Vol. 17. P. 1071–1096.
- Lin Y., Zhou K., Li J. Prediction of slope stability using four supervised learning methods // IEEE Access. 2018. Vol. 6. P. 31169–31179.
- Zeng P., Zhang T., Li T., Jimenez R., Zhang J., Sun X. Binary classification method for efficient and accurate system reliability analyses of layered soil slopes // Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. 2022. Vol. 16. № 3. P. 435–451.
- Novellino A., Cesarano M., Cappelletti P., Di Martire D., Di Napoli M., Ramondini M., Sowter A., Calcaterra D. Slow-moving landslide risk assessment combining machine learning and InSAR techniques // Catena. 2021. Vol. 203. Article 105317.
- Bayaraa M., Rossi C., Kalaitzis F., Sheil B. Entity embeddings in remote sensing: application to deformation monitoring for infrastructure // Remote Sens. 2023. Vol. 15. № 20. Article 4910.
- Cao B.T., Obel M., Freitag S., Mark P., Meschke G. Artificial neural network surrogate modelling for real-time predictions and control of building damage during mechanised tunnelling // Adv. Eng. Softw. 2020 . Vol. 149. Article 102869.
- Ninic J., Gamra A., Ghiassi B. Real-time assessment of tunnelling-induced damage to structures within the building information modelling framework // Underground Space. 2024. Vol. 14. P. 99–117.
- Mokhtari S., Mooney M.A. Feasibility study of EPB shield automation using deep learning // Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art. Boca Raton, FL, USA: CRC Press, 2019. P. 2691–2699.
- Chen X., Li X., Zhu H. Condition evaluation of urban metro shield tunnels in Shanghai through multiple indicators multiple causes model combined with multiple regression method // Tunn. Undergr. Space Technol. 2019. Vol. 85. P. 170–181.
- Li X., Lin X., Zhu H., Wang X., Liu Z. Condition assessment of shield tunnel using a new indicator: the tunnel serviceability index // Tunn. Undergr. Space Technol. 2017. Vol. 67. P. 98–106.
- Zhu M., Zhu H., Guo F., Chen X., Ju J.W. Tunnel condition assessment via cloud model-based random forests and self-training approach // Comput. Aided Civ. Inf. Eng. 2021. Vol. 36. № 2. P. 164–179. DOI:10.1111/mice.12601.
- Sheil B.B., Suryasentana S.K., Mooney M.A., Zhu, H., McCabe B.A., O’Dwyer K.G. Discussion: machine learning to inform tunnelling operations: recent advances and future trends // Proc. Inst. Civil Eng.-Smart Infrastruct. Constr. 2020 . Vol. 173. № 1. P. 180–181.
- Yu Y., Workman A., Grasmick J.G., Mooney M.A., Hering A.S. Space-time outlier identification in a large ground deformation data set // J. Qual. Technol. 2018. Vol. 50. № 4. P. 431–445.
- Xue Y.D., Zhang S. A fast metro tunnel profile measuring method based on close-range photogrammetry // Information Technology in Geo-engineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 57–69.
- Khetwal S., Pei S., Gutierrez M. A data-driven approach for direct assessment and analysis of traffic tunnel resilience // Information Technology in Geo- engineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 168–177.
- Ding H., Liu S., Cai S., Xia Y. Big data analysis of structural defects and traffic accidents in existing highway tunnels // Information Technology in Geoengineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 189–195.
- Hayashi H., Miyanaka M., Gomi H., et al. Prediction of forward tunnel face score of rock mass classification for stability by applying machine learning to drilling data // Information Technology in Geoengineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 268–278.
- Liu Y., Hou S. Rockburst prediction based on particle swarm optimization and machine learning algorithm // Information Technology in Geoengineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 292–303.
- Zhao W., Wei Y., Liu B., Liu S., Xiao L. Design and application of automatic monitoring and BIM technology to the construction of shield-bored underneath building // Information Technology in Geoengineering: Proceedings of the 3rd International Conference (ICITG), Guimaraes, Portugal. Cham, Switzerland: Springer, 2019. P. 493–501.
- Charles J.A., Gourvenec S., Vardy M.E. Recovering shear stiffness degradation curves from classification data with a neural network approach // Acta Geotech. 2023. Vol. 18. № 10. P. 1–15.
- Lambert S., Toe D., Mentani A., Bourrier F., 2021. A meta-model-based procedure for quantifying the on-site efficiency of rockfall barriers // Rock Mech. Rock Eng. Vol. 54. P. 487–500.
- Previtali M., Ciantia M.O., Spadea S., Castellanza R., Crosta G. Assessing rockfall barrier performance through block propagation codes and meta-models // Proceedings of the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Cham, Switzerland: Springer International Publishing, 2022. P. 291–298.
- Lanfranconi C., Sala G., Frattini P., Crosta G.B., Valagussa A. Assessing the rockfall protection efficiency of forests at the regional scale // Landslides. 2020 . Vol. 17. P. 2703–2721.
- Bao Y., Chen Z., Wei S., Xu Y., Tang Z., Li H. The state of the art of data science and engineering in structural health monitoring // Engineering. 2019. Vol. 5. № 2. P. 234–242.
- Jeong S., Ko J., Kim J. The effectiveness of a wireless sensor network system for landslide monitoring // IEEE Access. 2019. Vol. 8. P. 8073–8086.
- Soga K., Luo L. Distributed fiber optics sensors for civil engineering infrastructure sensing // J. Struct. Integrity Maint. 2018. Vol. 3. № 1. P. 1–21.
- Bayaraa M., Sheil B., Rossi C. InSAR and numerical modelling for tailings dam monitoring – the Cadia failure case study // Geotechnique. 2024. Vol. 74. № 10. P. 985–1003.
- Voyagaki E., Crispin J.J., Gilder C.E., Ntassiou K., O’Riordan N., Nowak P., Sadek T., Patel D., Mylonakis G., Vardanega P.J. The DINGO database of axial pile load tests for the UK: settlement prediction in fine-grained soils // Georisk: Assess. Manage. Risk Eng. Syst. Geohazards. 2022. Vol. 16. № 4. P. 640–661.
- Vahab M., Shahbodagh B., Haghighat E., Khalili N. Application of physics- informed neural networks for forward and inverse analysis of pile-soil interaction // Int. J. Solids Struct. 2023. Vol. 277. Article 112319.
- Zhang P., Yin Z.Y., Sheil B. Interpretable data-driven constitutive modelling of soils with sparse data // Comput. Geotech. 2023. Vol. 160. Article 105511.
- Zhang P., Yin Z.Y., Jin Y.F., Sheil B. Physics-constrained hierarchical data-driven modelling framework for complex path-dependent behaviour of soils // Int. J. Numer. Anal. Meth. Geomech. 2023. Vol. 46. № 10. P. 1831–1850.
- Ribeiro M.T., Singh S., Guestrin C. Why should i trust you? Explaining the predictions of any classifier // Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. P. 1135–1144.
- Guidotti R., Monreale A., Ruggieri S., Turini F., Giannotti F., Pedreschi D. A survey of methods for explaining black box models // ACM Comput. Surv. (CSUR). 2018. Vol. 51. № 5. P. 1–42.
- Lundberg S.M., Lee S.I. A unified approach to interpreting model predictions // Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4-9 December 2017. P. 4768-4777.
- Mitchell M., Wu S., Zaldivar A., Barnes P., Vasserman L., Hutchinson B., Spitzer E., Inioluwa D.R., Timnit G. Model cards for model reporting // Proceedings of the Conference on Fairness, Accountability, and Transparency, 2019. P. 220–229.
- Peng J., Liu X. Automated code compliance checking research based on BIM and knowledge graph // Sci. Rep. 2023. Vol. 13. № 1. Article 7065.
- Shahin M.A., Jaksa M.B., Maier H.R. State of the art of artificial neural networks in geotechnical engineering // Electron. J. Geotech. Eng. 2008. Vol. 8. № 1. P. 1–26.
- Baghbani A., Choudhury T., Costa S., Reiner J. Application of artificial intelligence in geotechnical engineering: a state-of-the-art review // Earth Sci. Rev. 2022. Vol. 228. Article 103991.
- Latif K., Sharafat A., Seo J. Digital twin-driven framework for TBM performance prediction, visualization, and monitoring through machine learning // Appl. Sci. 2023. Vol. 13. № 20. Article 11435.
- Kumar K. Geotechnical parrot tales (gpt): Harnessing large language models in geotechnical engineering // J. Geotech. Geoenviron. Eng. 2024. Vol. 150. № 1. Article 02523001.
- Erichson N.B., Mathelin L., Yao Z., Brunton S.L., Mahoney M.W., Kutz J.N., Shallow neural networks for fluid flow reconstruction with limited sensors // Proc. Roy. Soc. 2020. Vol. A476. № 2238. Article 20200097.
- Yuan B., Heitor A., Wang H., Chen X. Physics-informed deep learning to solve three-dimensional Terzaghi consolidation equation: forward and inverse problems // Arabian Journal for Science and Engineering. 2025. 24 September. https://doi.org/10.1007/s13369-025-10602-2.
- Ouyang W., Li G., Chen L., Liu S.-W. Machine learning-based prediction of drilled-shaft capacity // Soils and Foundations. 2024. Vol. 64. № 2. P. 262–274.
- Tao R., Pan Y., Liu Z., et al. A physics-inspired machine learning approach for water-tightness estimation of defective cut-off walls with random construction errors // Acta Geotech. 2023. Vol. 18. P. 5959–5982. https://doi.org/10.1007/s11440-023-02030-z.
- Perdikaris P., Raissi M., Damianou A., Lawrence N.D., Karniadakis G.E. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling // Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 2017. Vol. 473. 2198. № 2198. Article 20160751.
- Le Gratiet L., Garnier J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity // Int. J. Uncertain. Quantif. 2014. Vol. 4. № 5. P. 365–386.
- Xu C., Cao B.T., Yuan Y., Meschke G. A multi-fidelity deep operator network (DeepONet) for fusing simulation and monitoring data: application to real-time settlement prediction during tunnel construction // Eng. Appl. Artif. Intel. 2024. Vol. 133. Article 108156.
- Lam R., Allaire D.L., Willcox K.E. Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources // 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015. Article 0143.
- Zhou X., Shi P. Multi-scale generative adversarial network for 2D subsurface reconstruction using multi-fidelity geological exploration data // Adv. Eng. Inf. 2025. Vol. 66. Article 103482.
- Zhang P., Yin Z.Y., Jin Y.F., Yang J., Sheil B. Physics-informed multifidelity residual neural networks for hydromechanical modeling of granular soils and foundation considering internal erosion // J. Eng. Mech. 2022. Vol. 148. № 4. Article 04022015.
- He G.F., Zhang P., Yin Z.Y., Jin Y.F., Yang Y. Multi-fidelity data-driven modelling of rate-dependent behaviour of soft clays // Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards.2023. Vol. 17. № 1. P. 64–76.
- Zhang P., Yin Z.Y., Sheil B. Multifidelity constitutive modeling of stress-induced anisotropic behavior of clay // J. Geotech. Geoenviron. Eng. 2024. Vol. 150. № 3. Article 04024003.
- Brunton S.L., Proctor J.L., Kutz J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems // Proc. Natl. Acad. Sci. 2016. Vol. 113. № 15. P. 3932–3937.
- Zhang P., Yin Z.-Y., Sheil B. A physics-informed data-driven approach for consolidation analysis // Geotechnique. 2023 . Vol. 74. № 7. P. 620–631.
- Apoji D., Sheil B., Soga K. Shaping the future of tunneling with data and emerging technologies // Data-Centric Eng. 2023. Vol. 4. Article e29.
- Zhao Y., Liu Y., Mu E. A review of intelligent subway tunnels based on digital twin technology // Buildings. 2024. Vol. 14. № 8. Article 2452.
- Chen L., Tophel A., Hettiyadura U., Kodikara J. An investigation into the utility of large language models in geotechnical education and problem solving // Geotechnics. 2024. Vol. 4. № 2. P. 470–498.
- Xu H.R., Zhang N., Yin Z.Y., Njock P.G.A. GeoLLM: a specialized large language model framework for intelligent geotechnical design // Comput. Geotech. 2025. Vol. 177. Article 106849.
- Qian Z., Shi C. Large language model-empowered paradigm for automated geotechnical site planning and geological characterization // Autom. Constr. 2025. Vol. 173. Article 106103.
- Li H., Shi C. Few-shot learning of geological cross-sections from sparse data using large language model // Geodata and AI. 2025. Vol. 2. Article 100010.
- Xu H.R., Zhang N., Yin Z.Y., Njock P.G.A. Multimodal framework integrating multiple large language model agents for intelligent geotechnical design // Autom. Constr. 2025. Vol. 176. Article 106257.
- Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets // Adv. Neural Inform. Process. Syst. 2014. Vol. 3. № 11.
- Song Y., Sohl-Dickstein J., Kingma D.P., Kumar A., Ermon S., Poole B. Score-based generative modeling through stochastic differential equations // ArXiv preprint. 2020. arXiv:2011.13456v1 [cs.LG] 26 Nov 2020.
- Montero F.C., Coelho B.Z., Smyrniou E., Taormina R., Vardon P.J. SchemaGAN: a conditional generative adversarial network for geotechnical subsurface schematisation // Comput. Geotech. 2025. Vol. 183 . Article 107177.
- Ge Q., Li J., Lacasse S., Sun H., Liu Z. Data-augmented landslide displacement prediction using generative adversarial network // J. Rock Mech. Geotech. Eng. 2024. Vol. 16. № 10. P. 4017–4033.
- Tripura T., Chakraborty S. Wavelet Neural Operator for solving parametric partial differential equations in computational mechanics problems // Computer Methods in Applied Mechanics and Engineering. 2023. Vol. 404. Article 115783.
- Zhong W., Meidani H. 2025. Physics-informed geometry-aware neural operator // Comput. Methods Appl. Mech. Eng. Vol. 434. Article 117540.
- Jiang Y., Byrne E., Glassey J., Chen X. Integrating graph neural network-based surrogate modeling with inverse design for granular flows // Ind. Eng. Chem. Res. 2024. Vol. 63. № 20. P. 9225–9235.
- Choi Y., Macedo J., Liu C. Differentiable graph neural network simulator for forward and inverse modeling of multi-layered slope system with multiple material properties // ArXiv preprint. 2025. arXiv:2504.15938.
Журнал остается бесплатным и продолжает развиваться.
Нам очень нужна поддержка читателей.
Поддержите нас один раз за год
Поддерживайте нас каждый месяц












