Modelling and mapping climate change impacts on permafrost at high spatial resolution for a region with complex terrain
ЧЖАН Ю.Канадский центр дистанционного зондирования Министерства природных ресурсов Канады, г. Оттава, пров. Онтарио, Канадаyu.zhang@nrcan.gc.ca
ВАН С.Колледж ресурсов и экологии Хэбэйского педагогического университета, г. Шицзячжуан, пров. Хэбэй, Китай
ФРЕЙЗЕР Р.Канадский центр дистанционного зондирования Министерства природных ресурсов Канады, г. Оттава, пров. Онтарио, Канада
ОЛТХОФ И.Канадский центр дистанционного зондирования Министерства природных ресурсов Канады, г. Оттава, пров. Онтарио, Канада
ЧЭНЬ В.Канадский центр дистанционного зондирования Министерства природных ресурсов Канады, г. Оттава, пров. Онтарио, Канада
У В.Северный сервисный центр для Северо-Западных территорий Канады Агентства парков Канады, г. Виннипег, пров. Манитоба, КанадаAbstract: We present a slightly abridged and adapted translation of the long paper “Modelling and mapping climate change impacts on permafrost at high spatial resolution for a region with complex terrain” written by a group of Canadian and Chineze researchers (Zhang et al., 2013). It was published in 2013 in the “The Cryosphere” journal. It is an open access paper under the CC BY 3.0 license that allows it to be distributed, translated, adapted, and supplemented, provided that the types of changes are noted and the original source is referred to. In our case, the full reference to the original paper (Zhang et al., 2013), which was used for the presented translation, is given in the end.
Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for landuse planning and ecological assessment. Here the authors mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park (an Arctic region with complex terrain in northern Yukon, Canada). Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, the authors clustered climate distribution and topographic effects on insolation into discrete types. `-
The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation.
The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping.
Keywords: permafrost; climate; climate change; topography; ground conditions; soil conditions; active layer; modeling; mapping
DOI: https://doi.org/10.58339/2949-0677-2025-7-1-54-75
UDC: 551.583; 551.581.1
For citation: Zhang Yu., Wang X., Fraser R., Olthof I., Chen W., Mclennan D., Ponomarenko S., Wu W. Modelirovanie i kartirovanie vliyaniya izmenenii klimata na mnogoletnyuyu merzlotu v regione so slozhnym rel'efom s vysokim prostranstvennym razresheniem [Modelling and mapping climate change impacts on permafrost at high spatial resolution for a region with complex terrain (in Rus.)] // Geoinfo. 2025. T. 7. № 1. S. 54–75. DOI:10.58339/2949-0677-2025-7-1-54-75.
Funding: The research presented in the article was supported by the Canadian Space Agency under the ParkSPACE GRIP project and by Natural Resources Canada under the Earth Observation Program (Earth Sciences Sector contribution No. 20120211). The article was edited by T. Zhang (original article in English – Ed.)
REFERENCES:
- ACIA. Impact of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, 2005. 1042 p.
- Vitt D.H., Halsey L.A., Zoltai S.C. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost // Can. J. Forest Res. 2000. Vol. 30. P. 283–287.
- Smith S.L., Romanovsky V.E., Lewkowicz A.G., Burn C.R., Allard M., Clow G.D., Yoshikawa K., Throop J. Thermal state of permafrost in North America: a contribution to the International Polar Year // Permafrost Periglac. 2010. Vol. 21. P. 117–135. DOI:10.1002/ppp.690,
- Riseborough D., Shiklomanov N., Etzelmuller B., Gruber S., Marchenko S. Recent advances in permafrost modelling // Permafrost Periglac. 2008. Vol. 19. P. 137–156. DOI:10.1002/ppp.615.
- Shiklomanov N.I., Anisimov O.A., Zhang T., Marchenko S., Nelson F.E., Oelke C. Comparison of model produced active layer fields: results for northern Alaska // J. Geophys. Res. 2007. Vol. 112. Paper F02S10. DOI:10.1029/2006JF000571.
- Osterkamp T.E. The recent warming of permafrost in Alaska // Global Planet. Change. 2005. Vol. 49. P. 187–202. DOI:10.1016/j.gloplacha.2005.09.001.
- Zhang Y., Chen W., Riseborough D.W. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100 // Geophys. Res. Lett. 2008. Vol. 35. Paper L02502. DOI:10.1029/2007GL032117.
- Anisimov O., Reneva S. Permafrost and changing climate: the Russian perspective // Ambio. 2006. Vol. 35. P. 169–175.
- Marchenko S., Romanovsky V., Tipenko G. Numerical modeling of spatial permafrost dynamics in Alaska // Proceedings of the 9th International Conference on Permafrost (edited by Kane D. L., Hinkel K.M.). US: Institute of Northern Engineering, University of Alaska Fairbanks, 2008. P. 190–204.
- Zhang Y. Chen W., Riseborough D.W. Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age // J. Geophy. Res. 2006. Vol. 111. Paper D22103. DOI:10.1029/2006JD007284.
- Jafarov E.E., Marchenko S.S., Romanovsky V.E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset // The Cryosphere. 2012. Vol. 6. P. 613–624. DOI:10.5194/tc- 6-613-2012.
- Duchesne C., Wright J.F., Ednie M. High-resolution numerical modeling of climate change impacts on permafrost in the vicinities of Inuvik, Norman Wells, and Fort Simpson, NT, Canada // Proceedings of the 9th International Conference on Permafrost (edited by Kane D.L., Hinkel K.M.). US: Institute of Northern Engineering, University of Alaska Fairbanks, 2008. P. 385–390.
- Zhang Y., Li J.,Wang X., Chen W., Sladen W., Dyke L., Dredge L., Poitevin J., McLennan D., Stewart H., Kowalchuk S., Wu W., Kershaw G.P., Brook R.K. Modelling and mapping permafrost at high spatial resolution in Wapusk National Park, Hudson Bay Lowlands // Can. J. Earth Sci. 2012. Vol. 49. P. 925–937. DOI:10.1139/E2012-031.
- Zhang Y. Spatio-temporal features of permafrost thaw projected from long-term high-resolution modeling for a region in the Hudson Bay Lowlands in Canada // J. Geophys. Res.-Earth. 2013. Vol. 118. P. 1–11. DOI:10.1002/jgrf.20045.
- Canadian Parks Service: Northern Yukon National Park Resource Description and Analysis: RM REPORT 93-01/INP. Natural Resources Conservation Section, Canadian Parks Service, Prairie and Northern Region. Winnipeg, 1993.
- Heginbottom J.A., Dubreuil M.A., Harker P.A. Canada Permafrost // National Atlas of Canada (5th edn.). Ottawa, Canada: Natural Resources Canada, 1995.
- Mackenzie W., MacHutchon A.G. Habitat Classification for the Firth River Valley, Ivvavik National Park, Yukon, Western Arctic District. Inuvik, Parks Canada, 1996. 81 p.
- Zhang Y., Chen W., Cihlar J. A process-based model for quantifying the impact of climate change on permafrost thermal regimes // J. Geophys. Res. 2003. Vol. 108. Paper 4695. DOI:10.1029/2002JD003354.
- Zhang Y., Chen W., Smith S.L., Riseborough D.W., Cihlar J. Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change // J. Geophys. Res. 2005 . Vol. 110. Paper D03112. DOI:10.1029/2004JD004910.
- Zhang Y., Li C., Trettin C.C., Li H., Sun G. An integrated model of soil, hydrology and vegetation for carbon dynamics in wetland ecosystems // Global Biogeochem. Cy. 2002. Vol. 16. Paper 1061. DOI:10.1029/2001GB001838.
- Wang T., Hamann A., Spittlehouse D., Aitken S.N. Development of scale-free climate data for western Canada for use in resource management // Int. J. Climatol. 2006 . Vol. 26. P. 383–397. DOI:10.1002/joc.1247.
- McKenney D.W., Hutchinson M.F., Papadopol P., Lawrence K., Pedlar J., Campbell K., Milewska E.M., Hopkinson R.F., Price D., Owen T. Customized spatial climate models for North America // B. Am. Meteorol. Soc. 2011. Vol. 92. P. 1611–1622. DOI:10.1175/2011BAMS3132.1.
- Fraser R., McLennan D., Ponomarenko S., Olthof I. Image-based predictive ecosystem mapping in Canadian Arctic Parks // Int. J. Appl. Earth Obs. 2012. Vol. 14. P. 129–138. DOI:10.1016/j.jag.2011.08.013.
- Walsh J.E., Chapman W.L., Romanovsky V., Christensen J.H., Stendel M. Global climate model performance over Alaska and Greenland // J. Climate. 2008. Vol. 21. P. 6156–6174. DOI:10.1175/2008JCLI2163.1.
- Lunardini V. Heat Transfer in Cold Climates. New York: Van Nostrand Reinhold, 1981. 731 p.
- Fu P., Rich P.M. The Solar Analyst 1.0 Manual. USA: Helios Environmental Modeling Institute (HEMI), 2000.
- Hossain M.F., Zhang Y., Chen W., Wang J., Pavlic G. Soil organic carbon content in northern Canada: a database of field measurements and its analysis // Can. J. Soil Sci. 2007. Vol. 87 . P. 259–268.
- Agriculture Canada Expert Committee on Soil Survey: The Canadian System of Soil Classification, 2nd edn. Ottawa, Canada: Agriculture Canada, 1987. Publication 1646. 164 p.
- Walmsley M., Utzig G., Vold T., Moon D., Van Barneveld J. (eds.). Describing Ecosystems in the Field. RAB Technical Paper 2. Victoria, BC Canada: Resource Analysis Branch, British Columbia Ministry of Environment and British Columbia Ministry of Forests, 1980. Rep. № 7.
- Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the earth’s interior: analysis of the global data set // Rev. Geophys. 1993. Vol. 31. P. 267–280.
- Jessop A.M., Lewis T.J., Judge A.S., Taylor A.E., Drury M.J. Terrestrial heat flow in Canada // Tectonophysics. 1984. Vol. 103. P. 239–261.
- Majorowicz J.A., Skinner W.R., Safanda J. Large ground warming in the Canadian Arctic inferred from inversions of temperature logs // Earth Planet. Sc. Lett. 2004. Vol. 221. P. 15–25.
- Chen W., Zorn P., Chen Z., Latifovic R., Zhang Y., Li J., Quirouette J., Olthof I., Fraser R., Mclennan D., Poitevin J., Stewart H.M., Sharma R. Propagation of errors associated with scaling foliage biomass from field measurements to remote sensing data over a Canada’s northern national park // Remote Sens. Environ. 2013 . Vol. 130. P. 205–218. DOI:10.1016/j.rse.2012.11.012.
- Kattge K., Diaz S. Lavorel S., Prentice I.C., Leadley P., et al. TRY-a global database of plant traits // Glob. Change Biol. 2011. Vol. 17. P. 2905–2935. DOI:10.1111/j.1365-2486.2011.02451.x.
- Wang X., Zhang Y., Fraser R., Chen W. Evaluating the major controls on permafrost distribution in Ivvavik National Park based on process-based modelling // Proceeding of The 63rd Canadian Geotechnical Conference and the 6th Canadian Permafrost Conference (GEO2010) . Calgary, Canada, 2010. P. 1235–1241.
- Tarnocai C. Soil Landscapes of the Firth River Area, Northwest Territories – Yukon Territory. Ottawa, Canada, Research Branch, Agriculture Canada, 1986. 1:1 million map.
- Smith S.L. Burgess M.M. A Digital Database of Permafrost Thickness in Canada. Ottawa, Canada: Geological Survey of Canada, 2002. Open File № 4173. P. 38.
- Burn C.R., Zhang Y. Permafrost and climate change at Herschel Island (Qikiqtaruq), Yukon Territory, Canada // J. Geophys. Res. 2009. Vol. 114. Paper F02001. DOI:10.1029/2008JF001087.
- Burn C.R., Kokelj S.V. The environment and permafrost of the Mackenzie Delta area // Permafrost Periglac. 2009 . Vol. 20. P. 83–105. DOI:10.1002/ppp.655.
- Bonnaventure P.P., Lewkowicz A.G., Kremer M., Sawada M.C. A permafrost probability model for the southern Yukon and northern British Columbia, Canada // Permafrost Periglac. 2012. Vol. 23. P. 52–68. DOI:10.1002/ppp.1733.
- Goudriaan J. Crop Micrometeorology: a Simulation Study // Simulation Monographs. Wageningen, Netherlands: PUDOC, 1977. 236 p.
- Wang S., Chen W., Cihlar J. New calculation methods of diurnal distribution of solar radiation and its interception by canopy over complex terrain // Ecol. Model. 2002. Vol. 155. P. 191–204.
- Boland J., Ridley B., Brown B. Models of diffuse solar radiation // Renew. Energ. 2008. Vol. 33. P. 575–584.
- Environment Canada and the National Research Council of Canada. Canadian Energy and Engineering Data Sets (CWEEDS) and Canadian Weather for Energy Calculations (CWEC). 2007. CD-ROM.
- Ruth D.W., Chant R.E. The relationship of diffusive radiation to total radiation in Canada // Sol. Energy. 1976. Vol. 18. P. 153–154.
Article in RSCI: https://elibrary.ru/item.asp?id=82518759


